Uneingeschränkter Zugang

Study on Potential Causes of Defects Following Heat and Thermochemical (Carburising) Treatments of Linear Bearings


Zitieren

[1] Munteanu Al. and Ciobanu I. (1980), Heat Treatment Technology, Design Guide, Reprography, University of Braúov. Search in Google Scholar

[2] Dulămiţă T. and Florian E. (1982), Thermal and thermochemical treatments, Didactic and Pedagogical Publishing House, Bucharest. Search in Google Scholar

[3] Vermeşan H., Mudura P., Vermeşan G., Berar Al. I. (2001), The theoretical bases of thermal treatments, ISBN 973-8083-91-5, Ed. University of Oradea, Oradea Search in Google Scholar

[4] Cheşa I., Laşcu-Simion N., Nedelcu C. (1984), The choice and use of steels, Technical Ed., Bucharest Search in Google Scholar

[5] Fiterău V. (1996), The influence of alloying elements on steels and steels with chromium for bearings, OIDICM, pp.322. Search in Google Scholar

[6] Dulămiţă T. (1967), Thermal treatment technology and equipment, Didactic and Pedagogical Ed. Bucharest Search in Google Scholar

[7] Arunkumar S., Chandrasekaran M., Muthuraman V., Vinod Kumar T., (2021), Study properties and mechanical behavior of the shaft material 16MnCr5 Materials Today: Proceedings 37 2458–2461.10.1016/j.matpr.2020.08.286 Search in Google Scholar

[8] Rudenko S. P., Val’ko A. L., Mosunov E. I. (2012), Structure of carburized layers of transmission gears of power-saturated vehicles, Metal Science and Heat Treatment, Vol. 54, Nos. 3 – 4, July.10.1007/s11041-012-9480-9 Search in Google Scholar

[9] Stepanov M. S., Dombrovskii Yu. M., Pustovoit V. N. (2017), Diffusion saturation of carbon steel under microarc heating, Metal Science and Heat Treatment, Vol. 59, Nos. 1 – 2, May.10.1007/s11041-017-0102-4 Search in Google Scholar

[10] Sawicki J., Dybowski K., Zgórniak P. (2021), Effect of stages of vacuum carburizing on deformations in splines of steels 16MnCr5, AMS6265 and 17CrNiMo7-6, Metal Science and Heat Treatment, Vol. 62, Nos. 9 – 10, January.10.1007/s11041-021-00605-9 Search in Google Scholar

[11] Paun D., Cojocaru M., Mihailov V. (2012), Mathematical Modeling of the Influence of Main Carburizing Thermochemical Treatment Parameters on the Surface Hardness of Parts Made of MSRR 6009 Steel1, Surface Engineering and Applied Electrochemistry, Vol. 48, No. 3, pp. 244–249.10.3103/S106837551203009X Search in Google Scholar

[12] Ionita G. Iliescu A. Rizescu C. (2010), Research on size and layer uniformity of thermochemical treatment by outfit furnaces with control plants of carbon potential and controled atmosphere, Metalurgia International, Volume Issue 3, pp. 13-19 Search in Google Scholar

[13] Widmark M. and Melander A. (1999), Effect of material, heat treatment, grinding and shot peening on contact fatigue life of carburised steels, International Journal of Fatigue Volume 21, Issue 4, April, pp. 309-327.10.1016/S0142-1123(98)00077-2 Search in Google Scholar

[14] GawroĔski Z., KruszyĔski B., Kula P. (2005), Synergistic effects of thermo-chemical treatment and super abrasive grinding in gears’ manufacturing, Journal of Materials Processing Technology Volume 159, Issue 2, 30 January, pp. 249-25610.1016/j.jmatprotec.2004.04.419 Search in Google Scholar

[15] Schrenk M., Krenn S., Ripoll M.R., Nevosad A., Paar S., Grundtner R., Rohm G., Franek F. (2016), Statistical analysis on the impact of process parameters on tool damage during press hardening, Journal of Manufacturing Processes Volume 23, August, pp 222-230.10.1016/j.jmapro.2016.05.008 Search in Google Scholar

eISSN:
2668-4217
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, andere, Technik, Elektrotechnik, Grundlagen der Elektrotechnik, Maschinenbau, Grundlagen des Maschinenbaus, Mathematik, Allgemeines