Uneingeschränkter Zugang

Kinetics of phenol hydroxylation reaction of open mesoporous TS-1 with high backbone titanium content


Zitieren

Zongzhuang, H., Yu, S., Fumin, W., & Xubin, Z. (2018). Synthesis of hierarchical titanium silicalite-1 in the presence of polyquaternium-7 and its application in the hydroxylation of phenol. Journal of Materials ence, 53, 12837-12849. Search in Google Scholar

Assoah, B., Veiros, L. F., Afonso, C. A. M., & Candeias, N. R. (2016). Biomass-based and oxidant-free preparation of hydroquinone from quinic acid. European Journal of Organic Chemistry, 2016. Search in Google Scholar

Holger, Klein, Ralf, Jackstell, Thomas, & Netscher, et al. (2011). Rhodium-catalyzed cyclocarbonylation of alkynes to hydroquinones. ChemCatChem, 3(8), 1273-1276. Search in Google Scholar

Iniesta, J., Michaud, P. A., & Comninellis, C. (2002). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. Search in Google Scholar

Buenrostro-Figueroa, J. J., Velázquez, M, Flores-Ortega, O., Ascacio-Valdés, J.A, Huerta-Ochoa, S., & Aguilar, C. N., et al. (2017). Solid state fermentation of fig (ficus carica, l.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochemistry, S1359511317304919. Search in Google Scholar

Sang, Z., Wang, K., Wang, H., Wang, H., Ma, Q., & Han, X., et al. (2017). Design, synthesis and biological evaluation of 2-acetyl-5-o-(amino-alkyl), phenol derivatives as multifunctional agents for the treatment of alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 5046. Search in Google Scholar

Gupta, K. C., & Sutar, A. K. (2008). Polymer supported catalysts for oxidation of phenol and cyclohexene using hydrogen peroxide as oxidant. Journal of Molecular Catalysis A Chemical, 280(1-2), 173-185. Search in Google Scholar

Zaidi, S., Soares, M. J., Bougarech, A., Thiyagarajan, S., & Sousa, A. F. (2021). Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-) aromatic polyesters bearing 2, 5-furandicarboxylic moieties. European Polymer Journal, 110413. Search in Google Scholar

Shen, X., Wang, J., Liu, M., Li, M., & Lu, J. (2019). Preparation of the hierarchical ti-rich ts-1 via tritonx-100-assisted synthetic strategy for the direct oxidation of benzene. Catalysis Letters, 149(9), 2586-2596. Search in Google Scholar

Liu, Z., & Davis, R. J. (1994). Investigation of the structure of microporous ti-si mixed oxides by x-ray, uv reflectance, ft-raman, and ft-ir spectroscopies. The Journal of Physical Chemistry, 98(4), 1253-1261. Search in Google Scholar

Bai, R., Song, Y., Bai, R., & Yu, J. (2020). Creation of hierarchical titanosilicate ts-1 zeolites. Advanced Materials Interfaces. Search in Google Scholar

Wang, Y., Lin, M., & Tuel, A. (2007). Hollow ts-1 crystals formed via a dissolution–recrystallization process. Microporous & Mesoporous Materials, 102(1-3), 80-85. Search in Google Scholar

Dai, C., Zhang, A., Li, L., Hou, K., Ding, F., & Li, J., et al. (2013). Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chemistry of Materials, 25(21), 4197-4205. Search in Google Scholar

Junzhong, L., Taimin, Y., Cong, L., & Junliang, S. (2018). Hierarchical mfi zeolite synthesized via regulating the kinetic of dissolution-recrystallization and their catalytic properties. Catalysis Communications, 115, 82-86. Search in Google Scholar

Wang, B., Peng, X., Zhang, W., Lin, M., Zhu, B., & Liao, W., et al. (2017). Hierarchical ts-1 synthesized via the dissolution-recrystallization process: influence of ammonium salts. Catalysis Communications, 101, 26-30. Search in Google Scholar

Yang, Z., Guan, Y., Xu, L., Zhou, Y., Fan, X., & Jiao, Y. (2023). Tetrapropylammonium hydroxide treatment of aged dry gel to make hierarchical ts-1 zeolites for catalysis. Crystal Growth and Design, 23(3), 1775-1785. Search in Google Scholar

Nirupa A Alekar and V Indira and S.B Halligudi and D Srinivas and S Gopinathan and C Gopinathan. (2000). Kinetics and mechanism of selective hydroxylation of benzene catalysed by vanadium substituted heteropolymolybdates. Journal of Molecular Catalysis A: Chemical. Search in Google Scholar

Han, Z., Shen, Y., Qin, X., Wang, F., Zhang, X., & Wang, G., et al. (2019). Synthesis of hierarchical titanium-rich titanium silicalite-1 zeolites and the highly efficient catalytic performance for hydroxylation of phenol. ChemistrySelect, 4(5), 1618-1626. Search in Google Scholar

Wang, G. J. (2006). Chemical kinetics of hydroxylation of phenol catalyzed by ts-1/diatomite in fixed-bed reactor. Chemical engineering journal, 116(3). Search in Google Scholar

Basar, Melek SelcenCaglayan, Burcu SelenAksoylu, A. Erhan. (2018). A study on catalytic hydrogen production: thermodynamic and experimental analysis of serial osr-prox system. Fuel Processing Technology, 178. Search in Google Scholar

Tyablikov, I. A., & Romanovsky, B. V. (2017). Mass transfer effect on the oxidation of alkenes and phenol with hydrogen peroxide using ts-1 titanosilicate as a catalyst. Catalysis Letters. Search in Google Scholar

Bai, R., Song, Y., Tian, G., Wang, F., & Yu, J. (2021). Titanium-rich ts-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment. Search in Google Scholar

Klaewkla, R., Kulprathipanja, S., Rangsunvigit, P., Rirksomboon, T., Rathbun, W., & Nemeth, L. (2007). Kinetic modelling of phenol hydroxylation using titanium and tin silicalite-1s: effect of tin incorporation. Chemical Engineering Journal, 129(1-3), 21-30. Search in Google Scholar

eISSN:
2444-8656
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, andere, Mathematik, Angewandte Mathematik, Allgemeines, Physik