Application of Chinese medicine evidence classification algorithm in the identification and treatment of Parkinson’s disease
05. Juni 2025
Über diesen Artikel
Online veröffentlicht: 05. Juni 2025
Eingereicht: 15. Jan. 2025
Akzeptiert: 04. Mai 2025
DOI: https://doi.org/10.2478/amns-2025-0973
Schlüsselwörter
© 2025 Danqi Zhang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Label co-occurrence frequency table of Parkinson’s data set
Phlegm heat moving wind - main | Blood stasis and wind. - main | Deficiency of qi and blood. - main | Liver and kidney deficiency. - main | Yin-yang deficiency - main | |
---|---|---|---|---|---|
Phlegm heat moving wind - Secondary | 2 | 1 | 13 | 5 | |
Blood stasis and wind. - Secondary | 3 | 1 | 6 | 3 | |
Deficiency of qi and blood. - Secondary | 2 | 3 | 9 | 13 | |
Liver and kidney deficiency. - Secondary | 7 | 2 | 5 | 2 | |
Yin-yang deficiency - Secondary | 1 | 7 | 16 | 2 |
Top word
Topic 0 | probability | Topic 1 | probability | Topic 2 | probability |
---|---|---|---|---|---|
Liver and kidney deficiency. - main | 0.3298 | Yin-yang deficiency - Secondary | 0.4500 | Liver and kidney deficiency. - Secondary | 0.3318 |
Phlegm heat moving wind - Secondary | 0.2311 | Deficiency of qi and blood. - main | 0.3000 | Phlegm heat moving wind - main | 0.1981 |
Deficiency of qi and blood. - Secondary | 0.1918 | Liver and kidney deficiency. - main | 0.1500 | Yin-yang deficiency - main | 0.1289 |
Yin-yang deficiency - main | 0.1321 | Phlegm heat moving wind - main | 0.1250 | Deficiency of qi and blood. - Secondary | 0.1452 |
Experimental results of Parkinson’s data set
Micro-F | Macro-F | Example-F | |
---|---|---|---|
LDA-ML(BR) | 0.4645 | 0.2456 | 0.4171 |
BTM-ML(BR) | 0.4378 | 0.2087 | 0.4459 |
WNTM-ML(BR) | 0.4209 | 0.2179 | 0.4981 |
BR | 0.4172 | 0.1789 | 0.4003 |
LDA-ML(LP) | 0.4098 | 0.2708 | 0.4410 |
BTM-ML(LP) | 0.4431 | 0.2567 | 0.4507 |
WNTM-ML(LP) | 0.4309 | 0.2208 | 0.4878 |
LP | 0.4001 | 0.2153 | 0.4027 |
LDA-ML(ECC) | 0.4112 | 0.2975 | 0.4268 |
BTM-ML(ECC) | 0.4035 | 0.2114 | 0.5624 |
WNTM-ML(ECC) | 0.4892 | 0.2084 | 0.4290 |
ECC | 0.4018 | 0.2041 | 0.3927 |
LDA-ML(MLkNN) | 0.3290 | 0.1532 | 0.1390 |
BTM-ML(MLkNN) | 0.2893 | 0.0973 | 0.3082 |
WNTM(MLkNN) | 0.3322 | 0.2567 | 0.1240 |
MLkNN | 0.2130 | 0.0897 | 0.1211 |
LDA-ML(CLR) | 0.4921 | 0.2330 | 0.4134 |
BTM-ML(CLR) | 0.4199 | 0.2652 | 0.4903 |
WNTM-ML(CLR) | 0.4933 | 0.2974 | 0.4872 |
CLR | 0.4119 | 0.1976 | 0.4135 |
Win/loss | 5/0 | 5/0 | 5/0 |