Deep Learning-based Research on Stylistic Migration and Creative Assistance for Drawing Artworks
und
19. März 2025
Über diesen Artikel
Online veröffentlicht: 19. März 2025
Eingereicht: 31. Okt. 2024
Akzeptiert: 13. Feb. 2025
DOI: https://doi.org/10.2478/amns-2025-0495
Schlüsselwörter
© 2025 Chao Jiang, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Evaluation results
SSIM | Rubens | Dürer | Zorn | Menzel | Seurat |
---|---|---|---|---|---|
DualGAN | 0.444 | 0.513 | 0.191 | 0.471 | 0.377 |
CGGAN | 0.433 | 0.517 | 0.172 | 0.458 | 0.226 |
StyleGAN | 0.474 | 0.545 | 0.128 | 0.398 | 0.244 |
AdaIN | 0.464 | 0.552 | 0.193 | 0.451 | 0.371 |
AdaAttIN | 0.478 | 0.571 | 0.243 | 0.405 | 0.298 |
IEST | 0.452 | 0.487 | 0.182 | 0.431 | 0.238 |
LapStyle | 0.419 | 0.503 | 0.136 | 0.367 | 0.355 |
SANet | 0.434 | 0.486 | 0.254 | 0.472 | 0.281 |
CCPL | 0.409 | 0.524 | 0.216 | 0.401 | 0.346 |
SSTR | 0.418 | 0.556 | 0.214 | 0.451 | 0.358 |
ArtFlow | 0.485 | 0.495 | 0.242 | 0.409 | 0.384 |
Ours | 0.498 | 0.576 | 0.257 | 0.484 | 0.392 |
PSNR | Rubens | Dürer | Zorn | Menzel | Seurat |
DualGAN | 11.075 | 12.213 | 8.684 | 10.956 | 10.288 |
CGGAN | 10.863 | 12.504 | 7.971 | 10.406 | 10.608 |
StyleGAN | 12.343 | 14.297 | 7.707 | 11.523 | 10.346 |
AdaIN | 12.424 | 14.153 | 8.991 | 12.178 | 9.584 |
AdaAttIN | 10.507 | 12.897 | 8.179 | 11.574 | 10.471 |
IEST | 13.572 | 13.591 | 8.999 | 10.275 | 9.634 |
LapStyle | 10.772 | 13.091 | 8.224 | 10.393 | 10.974 |
SANet | 13.277 | 13.841 | 7.662 | 13.092 | 9.917 |
CCPL | 13.108 | 11.071 | 8.367 | 11.243 | 9.308 |
SSTR | 11.381 | 13.022 | 8.426 | 12.418 | 10.649 |
ArtFlow | 10.866 | 13.301 | 8.027 | 10.567 | 9.531 |
Ours | 13.808 | 14.573 | 9.087 | 13.607 | 11.001 |
Model size and speed comparison
Algorithm | Parameter quantity | Style migration time (s) | ||
---|---|---|---|---|
1000×750 | 750×562 | 500×375 | ||
DualGAN | 20.68M | 101.66 | 96.40 | 88.47 |
CGGAN | 16.92M | 55.78 | 44.61 | 42.79 |
StyleGAN | 14.55M | 90.33 | 61.15 | 50.73 |
AdaIN | 8.86M | 23.49 | 22.06 | 17.95 |
AdaAttIN | 9.04M | 156.85 | 74.74 | 51.66 |
IEST | 12.01M | 14.79 | 13.16 | 7.76 |
LapStyle | 12.47M | 98.51 | 94.98 | 36.83 |
SANet | 20.75M | 119.05 | 116.25 | 33.49 |
CCPL | 5.69M | 11.42 | 10.46 | 8.28 |
SSTR | 13.37M | 23.29 | 16.97 | 12.12 |
ArtFlow | 8.63 M | 7.98 | 6.05 | 5.55 |
Ours | 1.02 M | 3.42 | 2.19 | 1.72 |
The results of the user study
Algorithm | Content quality (%) | Style strength (%) | Fondness (%) |
---|---|---|---|
DualGAN | 1.34 | 2.31 | 3.79 |
CGGAN | 3.72 | 2.17 | 3.59 |
StyleGAN | 4.88 | 1.33 | 2.13 |
AdaIN | 1.01 | 3.04 | 4.33 |
AdaAttIN | 3.37 | 3.87 | 1.81 |
IEST | 2.59 | 4.28 | 0.96 |
LapStyle | 3.14 | 5.84 | 6.13 |
SANet | 4.69 | 2.88 | 4.75 |
CCPL | 3.66 | 3.89 | 5.41 |
SSTR | 2.94 | 0.99 | 4.75 |
ArtFlow | 4.08 | 3.67 | 2.26 |
Ours | 64.58 | 65.73 | 60.09 |