Design and Implementation Strategy of Informative Training System for Tennis Physical Education
19. März 2025
Über diesen Artikel
Online veröffentlicht: 19. März 2025
Eingereicht: 24. Okt. 2024
Akzeptiert: 31. Jan. 2025
DOI: https://doi.org/10.2478/amns-2025-0486
Schlüsselwörter
© 2025 Siqi Mi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Control group tennis six technical assessment test results T test (M±SD)
Test item | Pre-test | Post-test | T | P |
---|---|---|---|---|
A | 43.50±13.85 | 44.87±11.34 | -2.734 | 0.031* |
B | 47.06±10.52 | 48.57±10.07 | -2.856 | 0.042* |
C | 41.33±9.06 | 42.84±10.44 | -3.117 | 0.035* |
D | 42.25±9.73 | 43.38±9.86 | -2.852 | 0.153 |
E | 45.31±10.67 | 46.33±10.89 | -3.007 | 0.027* |
F | 43.06±10.58 | 43.92±9.81 | -2.537 | 0.055 |
Test results of AA-GCN model using fine-grained data sets
Category | True sample | Prediction sample | Correct classification | Accuracy rate | Precision rate | Recall rate | F1-Score |
---|---|---|---|---|---|---|---|
A | 30 | 32 | 28 | 0.8889 | 0.9333 | 0.8750 | 0.9032 |
B | 30 | 32 | 28 | 0.9333 | 0.8750 | 0.9032 | |
C | 30 | 32 | 28 | 0.9333 | 0.8750 | 0.9032 | |
D | 30 | 27 | 25 | 0.8333 | 0.9259 | 0.8772 | |
E | 30 | 28 | 24 | 0.8000 | 0.8571 | 0.8276 | |
F | 30 | 29 | 27 | 0.9000 | 0.9310 | 0.9152 | |
Total | 180 | 180 | 160 | - | - | - |
Test results of ST-GCN model without fine-grained data sets
Category | True sample | Prediction sample | Correct classification | Accuracy rate | Precision rate | Recall rate | F1-Score |
---|---|---|---|---|---|---|---|
A | 30 | 20 | 20 | 0.6833 | 0.6667 | 1.0000 | 0.8000 |
B | 30 | 36 | 21 | 0.7000 | 0.5833 | 0.6363 | |
C | 30 | 34 | 21 | 0.7000 | 0.6176 | 0.6562 | |
D | 30 | 28 | 24 | 0.8000 | 0.8571 | 0.8276 | |
E | 30 | 35 | 18 | 0.6000 | 0.5143 | 0.5539 | |
F | 30 | 27 | 19 | 0.6333 | 0.7037 | 0.6666 | |
Total | 180 | 180 | 123 | - | - | - |
Experimental group badminton technical movement evaluation test results T-test (M±SD)
Test item | Pre-test | Post-test | T | P |
---|---|---|---|---|
A | 43.89±12.12 | 50.18±13.06 | -4.835 | 0.000*** |
B | 46.55±11.03 | 51.33±11.84 | -5.966 | 0.000*** |
C | 41.73±9.82 | 49.37±12.66 | -6.308 | 0.000*** |
D | 42.06±9.66 | 48.42±13.75 | -4.342 | 0.000*** |
E | 45.14±10.01 | 52.07±15.17 | -6.121 | 0.000*** |
F | 43.27±10.12 | 50.34±12.76 | -5.384 | 0.000*** |
Results of AA-GCN model tests without fine-grained data sets
Category | True sample | Prediction sample | Correct classification | Accuracy rate | Precision rate | Recall rate | F1-Score |
---|---|---|---|---|---|---|---|
A | 30 | 33 | 21 | 0.7222 | 0.7000 | 0.6364 | 0.6667 |
B | 30 | 35 | 27 | 0.9000 | 0.7714 | 0.8308 | |
C | 30 | 31 | 21 | 0.7000 | 0.6774 | 0.6885 | |
D | 30 | 25 | 19 | 0.6333 | 0.7600 | 0.6909 | |
E | 30 | 31 | 26 | 0.8667 | 0.8387 | 0.8525 | |
F | 30 | 25 | 16 | 0.5333 | 0.6400 | 0.5818 | |
Total | 180 | 180 | 130 | - | - | - |
Results of AGCN model tests using fine-grained data sets
Category | True sample | Prediction sample | Correct classification | Accuracy rate | Precision rate | Recall rate | F1-Score |
---|---|---|---|---|---|---|---|
A | 30 | 33 | 26 | 0.8278 | 0.8667 | 0.7879 | 0.8254 |
B | 30 | 32 | 25 | 0.8333 | 0.7813 | 0.8065 | |
C | 30 | 31 | 26 | 0.8667 | 0.8387 | 0.8525 | |
D | 30 | 27 | 25 | 0.8333 | 0.9259 | 0.8772 | |
E | 30 | 28 | 21 | 0.7000 | 0.7500 | 0.7241 | |
F | 30 | 29 | 26 | 0.8667 | 0.8966 | 0.8814 | |
Total | 180 | 180 | 149 | - | - | - |
Results of AGCN model tests without fine-grained data sets
Category | True sample | Prediction sample | Correct classification | Accuracy rate | Precision rate | Recall rate | F1-Score |
---|---|---|---|---|---|---|---|
A | 30 | 27 | 18 | 0.7056 | 0.6000 | 0.6667 | 0.6316 |
B | 30 | 34 | 22 | 0.7333 | 0.6471 | 0.6875 | |
C | 30 | 33 | 24 | 0.8000 | 0.7273 | 0.7619 | |
D | 30 | 26 | 20 | 0.6667 | 0.7692 | 0.7143 | |
E | 30 | 35 | 22 | 0.7333 | 0.6286 | 0.6769 | |
F | 30 | 25 | 21 | 0.7000 | 0.8400 | 0.7636 | |
Total | 180 | 180 | 127 | - | - | - |
Comparison of technical assessment results between the two groups T-test (M±SD)
Test item | Control group | Experimental group | T | P |
---|---|---|---|---|
A | 44.87±11.34 | 50.18±13.06 | -3.951 | 0.000*** |
B | 48.57±10.07 | 51.33±11.84 | -4.872 | 0.000*** |
C | 42.84±10.44 | 49.37±12.66 | -5.334 | 0.000*** |
D | 43.38±9.86 | 48.42±13.75 | -5.007 | 0.000*** |
E | 46.33±10.89 | 52.07±15.17 | -5.671 | 0.000*** |
F | 43.92±9.81 | 50.34±12.76 | -4.021 | 0.000*** |
Test results of ST-GCN model using fine-grained data sets
Category | True sample | Prediction sample | Correct classification | Accuracy rate | Precision rate | Recall rate | F1-Score |
---|---|---|---|---|---|---|---|
A | 30 | 33 | 25 | 0.7944 | 0.8333 | 0.7576 | 0.7936 |
B | 30 | 30 | 23 | 0.7667 | 0.7667 | 0.7667 | |
C | 30 | 33 | 26 | 0.8667 | 0.7879 | 0.8254 | |
D | 30 | 27 | 21 | 0.7000 | 0.7778 | 0.7369 | |
E | 30 | 29 | 24 | 0.8000 | 0.8276 | 0.8136 | |
F | 30 | 28 | 24 | 0.8000 | 0.8571 | 0.8276 | |
Total | 180 | 180 | 143 | - | - | - |