Uneingeschränkter Zugang

Design and Implementation Strategy of Informative Training System for Tennis Physical Education

  
19. März 2025

Zitieren
COVER HERUNTERLADEN

Figure 1.

OpenPose model structure diagram
OpenPose model structure diagram

Figure 2.

The Network Structure of AA-GCN
The Network Structure of AA-GCN

Figure 3.

Channel-eise topology feature combination graph convolution
Channel-eise topology feature combination graph convolution

Figure 4.

Channel-eise topology feature combination graph convolution network
Channel-eise topology feature combination graph convolution network

Figure 5.

Human action recognition process
Human action recognition process

Figure 6.

Overall design of tennis action recognition and analysis system
Overall design of tennis action recognition and analysis system

Figure 7.

Schematic diagram of calculating the Angle feature of the target person
Schematic diagram of calculating the Angle feature of the target person

Figure 8.

Acceleration data chart
Acceleration data chart

Figure 9.

Three-axis acceleration waveform of forehand stroke
Three-axis acceleration waveform of forehand stroke

Figure 10.

Comparison of acceleration curve and pressure curve during single forehand stroke
Comparison of acceleration curve and pressure curve during single forehand stroke

Figure 11.

Tennis action recognition model confusion matrix without use of fine-grained data sets
Tennis action recognition model confusion matrix without use of fine-grained data sets

Figure 12.

Tennis action recognition model confusion matrix using fine-grained data sets
Tennis action recognition model confusion matrix using fine-grained data sets

Control group tennis six technical assessment test results T test (M±SD)

Test item Pre-test Post-test T P
A 43.50±13.85 44.87±11.34 -2.734 0.031*
B 47.06±10.52 48.57±10.07 -2.856 0.042*
C 41.33±9.06 42.84±10.44 -3.117 0.035*
D 42.25±9.73 43.38±9.86 -2.852 0.153
E 45.31±10.67 46.33±10.89 -3.007 0.027*
F 43.06±10.58 43.92±9.81 -2.537 0.055

Test results of AA-GCN model using fine-grained data sets

Category True sample Prediction sample Correct classification Accuracy rate Precision rate Recall rate F1-Score
A 30 32 28 0.8889 0.9333 0.8750 0.9032
B 30 32 28 0.9333 0.8750 0.9032
C 30 32 28 0.9333 0.8750 0.9032
D 30 27 25 0.8333 0.9259 0.8772
E 30 28 24 0.8000 0.8571 0.8276
F 30 29 27 0.9000 0.9310 0.9152
Total 180 180 160 - - -

Test results of ST-GCN model without fine-grained data sets

Category True sample Prediction sample Correct classification Accuracy rate Precision rate Recall rate F1-Score
A 30 20 20 0.6833 0.6667 1.0000 0.8000
B 30 36 21 0.7000 0.5833 0.6363
C 30 34 21 0.7000 0.6176 0.6562
D 30 28 24 0.8000 0.8571 0.8276
E 30 35 18 0.6000 0.5143 0.5539
F 30 27 19 0.6333 0.7037 0.6666
Total 180 180 123 - - -

Experimental group badminton technical movement evaluation test results T-test (M±SD)

Test item Pre-test Post-test T P
A 43.89±12.12 50.18±13.06 -4.835 0.000***
B 46.55±11.03 51.33±11.84 -5.966 0.000***
C 41.73±9.82 49.37±12.66 -6.308 0.000***
D 42.06±9.66 48.42±13.75 -4.342 0.000***
E 45.14±10.01 52.07±15.17 -6.121 0.000***
F 43.27±10.12 50.34±12.76 -5.384 0.000***

Results of AA-GCN model tests without fine-grained data sets

Category True sample Prediction sample Correct classification Accuracy rate Precision rate Recall rate F1-Score
A 30 33 21 0.7222 0.7000 0.6364 0.6667
B 30 35 27 0.9000 0.7714 0.8308
C 30 31 21 0.7000 0.6774 0.6885
D 30 25 19 0.6333 0.7600 0.6909
E 30 31 26 0.8667 0.8387 0.8525
F 30 25 16 0.5333 0.6400 0.5818
Total 180 180 130 - - -

Results of AGCN model tests using fine-grained data sets

Category True sample Prediction sample Correct classification Accuracy rate Precision rate Recall rate F1-Score
A 30 33 26 0.8278 0.8667 0.7879 0.8254
B 30 32 25 0.8333 0.7813 0.8065
C 30 31 26 0.8667 0.8387 0.8525
D 30 27 25 0.8333 0.9259 0.8772
E 30 28 21 0.7000 0.7500 0.7241
F 30 29 26 0.8667 0.8966 0.8814
Total 180 180 149 - - -

Results of AGCN model tests without fine-grained data sets

Category True sample Prediction sample Correct classification Accuracy rate Precision rate Recall rate F1-Score
A 30 27 18 0.7056 0.6000 0.6667 0.6316
B 30 34 22 0.7333 0.6471 0.6875
C 30 33 24 0.8000 0.7273 0.7619
D 30 26 20 0.6667 0.7692 0.7143
E 30 35 22 0.7333 0.6286 0.6769
F 30 25 21 0.7000 0.8400 0.7636
Total 180 180 127 - - -

Comparison of technical assessment results between the two groups T-test (M±SD)

Test item Control group Experimental group T P
A 44.87±11.34 50.18±13.06 -3.951 0.000***
B 48.57±10.07 51.33±11.84 -4.872 0.000***
C 42.84±10.44 49.37±12.66 -5.334 0.000***
D 43.38±9.86 48.42±13.75 -5.007 0.000***
E 46.33±10.89 52.07±15.17 -5.671 0.000***
F 43.92±9.81 50.34±12.76 -4.021 0.000***

Test results of ST-GCN model using fine-grained data sets

Category True sample Prediction sample Correct classification Accuracy rate Precision rate Recall rate F1-Score
A 30 33 25 0.7944 0.8333 0.7576 0.7936
B 30 30 23 0.7667 0.7667 0.7667
C 30 33 26 0.8667 0.7879 0.8254
D 30 27 21 0.7000 0.7778 0.7369
E 30 29 24 0.8000 0.8276 0.8136
F 30 28 24 0.8000 0.8571 0.8276
Total 180 180 143 - - -
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere