Uneingeschränkter Zugang

An integrated analytical approach for multimodal remote sensing data in marine ecosystem damage early warning

  
18. Nov. 2024

Zitieren
COVER HERUNTERLADEN

Townsend, M., Davies, K., Hanley, N., Hewitt, J. E., Lundquist, C. J., & Lohrer, A. M. (2018). The challenge of implementing the marine ecosystem service concept. Frontiers in Marine Science, 5, 359. Search in Google Scholar

Hattam, C., Atkins, J. P., Beaumont, N., Bӧrger, T., Bӧhnke-Henrichs, A., Burdon, D., ... & Austen, M. C. (2015). Marine ecosystem services: linking indicators to their classification. Ecological Indicators, 49, 61-75. Search in Google Scholar

Österblom, H., Crona, B. I., Folke, C., Nyström, M., & Troell, M. (2017). Marine ecosystem science on an intertwined planet. Ecosystems, 20, 54-61. Search in Google Scholar

Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature ecology & evolution, 1(5), 0116. Search in Google Scholar

Barbier, E. B. (2017). Marine ecosystem services. Current Biology, 27(11), R507-R510. Search in Google Scholar

Sättele, M., Krautblatter, M., Bründl, M., & Straub, D. (2016). Forecasting rock slope failure: how reliable and effective are warning systems?. Landslides, 13, 737-750. Search in Google Scholar

Belkin, I. M. (2021). Remote sensing of ocean fronts in marine ecology and fisheries. Remote sensing, 13(5), 883. Search in Google Scholar

Agardy, T., Cody, M., Hastings, S., Hoyt, E., Nelson, A., Tetley, M., & Notarbartolo di Sciara, G. (2019). Looking beyond the horizon: an early warning system to keep marine mammal information relevant for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 29, 71-83. Search in Google Scholar

Gsell, A. S., Scharfenberger, U., Özkundakci, D., Walters, A., Hansson, L. A., Janssen, A. B., ... & Adrian, R. (2016). Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National Academy of Sciences, 113(50), E8089-E8095. Search in Google Scholar

Clements, C. F., McCarthy, M. A., & Blanchard, J. L. (2019). Early warning signals of recovery in complex systems. Nature Communications, 10(1), 1681. Search in Google Scholar

Mahrad, B. E., Newton, A., Icely, J. D., Kacimi, I., Abalansa, S., & Snoussi, M. (2020). Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: a review. Remote Sensing, 12(14), 2313. Search in Google Scholar

Fingas, M. (2019). Remote sensing for marine management. In World seas: An environmental evaluation (pp. 103-119). Academic Press. Search in Google Scholar

Zhao, Q., Pepe, A., Zamparelli, V., Mastro, P., Falabella, F., Abdikan, S., ... & Calò, F. (2024). Innovative remote sensing methodologies and applications in coastal and marine environments. Geo-Spatial Information Science, 27(3), 836-853. Search in Google Scholar

Zhang, X., Li, Z., Li, D., & He, Y. (2019). Marine environment distinctions and change law based on eCongnition remote sensing technology. Journal of Coastal Research, 94(SI), 107-111. Search in Google Scholar

Zahir, M., Su, Y., Shahzad, M. I., Ayub, G., Rehman, S. U., & Ijaz, J. (2024). A review on monitoring, forecasting, and early warning of harmful algal bloom. Aquaculture, 741351. Search in Google Scholar

Murray, N. J., Keith, D. A., Bland, L. M., Ferrari, R., Lyons, M. B., Lucas, R., ... & Nicholson, E. (2018). The role of satellite remote sensing in structured ecosystem risk assessments. Science of the Total Environment, 619, 249-257. Search in Google Scholar

Srėbalienė, G., Lehtiniemi, M., Ojaveer, H., Gollasch, S., Outinen, O., Perez, M. S., ... & Olenin, S. (2024). Early warning system on harmful aquatic organisms at a regional sea scale: Components and mechanisms. Marine Policy, 169, 106334. Search in Google Scholar

Ouellette, W., & Getinet, W. (2016). Remote sensing for marine spatial planning and integrated coastal areas management: Achievements, challenges, opportunities and future prospects. Remote Sensing Applications: Society and Environment, 4, 138-157. Search in Google Scholar

Wang, S., Chen, S., Zhang, H., & Song, M. (2021). The model of early warning for China’s marine ecology-economy symbiosis security. Marine Policy, 128, 104476. Search in Google Scholar

O’Connor Edel,Smeaton Alan F.,O’Connor Noel E. & Regan Fiona. (2012). Investigation into the use of satellite remote sensing data products as part of a multi-modal marine environmental monitoring network.Dublin City Univ. (Ireland);Florida Institute of Technology (United States);Technical Univ. of Crete (Greece);Royal Belgian Military Academy (Belgium);The Univ. of Edinburgh (United Kingdom);RCAHMS (United Kingdom);ONERA (France)85320F-85320F-11. Search in Google Scholar

Dushyant Rao,Mark De Deuge,Navid Nourani–Vatani,Stefan B Williams & Oscar Pizarro. (2017). Multimodal learning and inference from visual and remotely sensed data. The International Journal of Robotics Research(1),24-43. Search in Google Scholar

Minghao Mo,Xuelei Wang,Houjian Wu,Shuming Cai,Xiaoyang Zhang & Huiliang Wang. (2009). Ecosystem health assessment of Honghu Lake Wetland of China using artificial neural network approach. Chinese Geographical Science(4),349-356. Search in Google Scholar

Anonymous. (2010). University of New Hampshire; UNH researchers probe BP oil spill’s effect on biodiversity. Energy Weekly News. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere