Uneingeschränkter Zugang

Probabilistic-based Markov chains for behavioral prediction

  
03. Sept. 2024

Zitieren
COVER HERUNTERLADEN

Maqsood, R., Ceravolo, P., Romero, C., & Ventura, S. (2022). Modeling and predicting students’ engagement behaviors using mixture Markov models. Knowledge and Information Systems, 64(5), 1349-1384. Search in Google Scholar

Ghadi, Y. Y., Akhter, I., Aljuaid, H., Gochoo, M., Alsuhibany, S. A., Jalal, A., & Park, J. (2022). Extrinsic behavior prediction of pedestrians via maximum entropy Markov model and graph-based features mining. Applied Sciences, 12(12), 5985. Search in Google Scholar

Saadi, I., Mustafa, A., Teller, J., & Cools, M. (2016). An integrated framework for forecasting travel behavior using markov chain monte carlo simulation and profile hidden markov models. In Proceedings of the 95th Annual Meeting of the Transportation Research Board. Transportation Research Board of the National Academies Washington, DC. Search in Google Scholar

SONG, T., & WANG, X. (2016). Customer behavior prediction for card consumption based on two-step clustering and hidden Markov chain. Journal of Computer Applications, 36(7), 1904. Search in Google Scholar

Zheng, X., An, D., Chen, X., & Guo, W. (2016). Interest prediction in social networks based on Markov chain modeling on clustered users. Concurrency and Computation: Practice and Experience, 28(14), 3895-3909. Search in Google Scholar

Yan, Q., Liu, X., Deng, X., Peng, W., & Zhang, G. (2020). Markov chain Monte Carlo based energy use behaviors prediction of office occupants. Algorithms, 13(1), 21. Search in Google Scholar

Karimzadeh, M., Zhao, Z., Gerber, F., & Braun, T. (2018, October). Pedestrians complex behavior understanding and prediction with hybrid markov chain. In 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 200-207). IEEE. Search in Google Scholar

Saadi, I., Mustafa, A., Teller, J., & Cools, M. (2016). Forecasting travel behavior using Markov Chains-based approaches. Transportation Research Part C: Emerging Technologies, 69, 402-417. Search in Google Scholar

Mao, C., Bao, L., Yang, S., Xu, W., & Wang, Q. (2021). Analysis and prediction of pedestrians’ violation behavior at the intersection based on a Markov chain. Sustainability, 13(10), 5690. Search in Google Scholar

Zhou, X., Liu, T., Yan, D., Shi, X., & Jin, X. (2021, April). An action-based Markov chain modeling approach for predicting the window operating behavior in office spaces. In Building Simulation (Vol. 14, pp. 301-315). Tsinghua University Press. Search in Google Scholar

Park, S., & Vasudev, V. (2017). Predicting Web user’s behavior: An absorbing Markov chain approach. In Internetworked World: 15th Workshop on e-Business, WeB 2016, Dublin, Ireland, December 10, 2016, Revised Selected Papers 15 (pp. 170-176). Springer International Publishing. Search in Google Scholar

Zhang Lin,Shen Yunzhong,Chen Qiujie & Ji Kunpu.(2024).An improved parameter filtering approach for processing GRACE gravity field models using first-order Gauss–Markov process.Journal of Geodesy(6). Search in Google Scholar

Bhawana Rathore, Pooja Sengupta, Baidyanath Biswas & Ajay Kumar.(2024).Predicting the price of taxicabs using Artificial Intelligence: A hybrid approach based on clustering and ordinal regression models.Transportation Research Part E103530-. Search in Google Scholar

Wojenski Andrzej,Kasprowicz Grzegorz,Pozniak Krzysztof T. & Romaniuk Ryszard.(2013).Automatic resource identification for FPGA-based reconfigurable measurement and control systems with mezzanines in FMC standard.Warsaw Univ. of Technology (Poland);Politechnika Warszawska (Poland)89031H-89031H-10. Search in Google Scholar

Katiyar, Abhay, Singh, Dinesh & Yadav, Rama Shankar.(2021).Advanced multi-hop clustering (AMC) in vehicular ad-hoc network.Wireless Networks(1),1-24. Search in Google Scholar

Reyes-Menendez Ana, Clemente-Mediavilla Jorge & Villagra Nuria.(2023).Understanding STI and SDG with artificial intelligence: A review and research agenda for entrepreneurial action.Technological Forecasting & Social Change. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere