Uneingeschränkter Zugang

Detection of antibiotic resistance mechanism and research on new anti-infection measures based on big data analysis


Zitieren

Gray, H. K., Arora-Williams, K. K., Preheim, S. P., Davis, M. F., & Young, C. (2020). Contribution of time, taxonomy, and selective antimicrobials to antibiotic and multidrug resistance in wastewater bacteria. Environmental Science & Technology, 54(24). Search in Google Scholar

Benoun, J. M., Labuda, J. C., Fogassy, Z. N., Pham, O., Pham, Q. M., & Puddington, L., et al. (2017). Antibiotic treatment causes a reduction in antigen-specific t cell memory and increased susceptibility to secondary infection. The Journal of Immunology, 198(1_Supplement), 216.8-216.8. Search in Google Scholar

Hepburn, L., Hijnen, D. J., Sellman, B. R., Mustelin, T., Sleeman, M. A., & May, R. D., et al. (2017). The complex biology and contribution of staphylococcus aureus in atopic dermatitis, current and future therapies. Br J Dermatol. Search in Google Scholar

Gallagher, L. A., Lee, S. A., Manoil, C., & Shuman, H. A. (2017). Importance of core genome functions for an extreme antibiotic resistance trait. Mbio, 8(6), e01655-17. Search in Google Scholar

Patel, S., Jhass, A., Hopkins, S., & Shallcross, L. (2019). Informing the development of a standardised approach to measure antibiotic use in secondary care: a systematic review protocol. BMJ Open, 9(5), e026792. Search in Google Scholar

Wang, Mianzhi, Liu, Peng, Zhou, & Qin, et al. (2018). Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. ENVIRONMENTAL POLLUTION. Search in Google Scholar

Pérez-Sancho, M, Vela, A. I., Kostrzewa, M., Zamora, L., Casamayor, A., & Domínguez, L, et al. (2018). First Analysis by maldi-tof ms technique of chryseobacterium species relevant to aquaculture. Journal of Fish Diseases. Search in Google Scholar

Buzid, A., Reen, F. J., Langsi, V. K., Eoin Ó Muimhneacháin, O'Gara, F., & Mcglacken, G. P., et al. (2017). Direct and rapid electrochemical detection ofpseudomonas aeruginosaquorum signaling molecules in bacterial cultures and cystic fibrosis sputum samples through cationic surfactant-assisted membrane disruption. ChemElectroChem. Search in Google Scholar

Li, Bofan, Zhou, Xiaoming, Liu, & Hongxing, et al. (2018). Simultaneous detection of antibiotic resistance genes on paper-based chip using [ru(phen)(2)dppz](2+) turn-on fluorescence probe. ACS applied materials & interfaces. Search in Google Scholar

Taku, A., Cowger, Yaping, Yang, & David, et al. (2017). Protein-adsorbed magnetic-nanoparticle-mediated assay for rapid detection of bacterial antibiotic resistance. Bioconjugate Chem. Search in Google Scholar

Fuentes, L., Balino, A., Cervantes, K., Fernandez, A., Santos, L. D. L., & Espinoza, I., et al. (2018). Genesis of antibiotic resistance (ar) xxxi mechanism(s) to mitigate the particulate matter (pm) induced dissemination of antibiotic resistance (ar) - human pathogens (ar-hup) consequential antibiotic resistance pandemic (arp). The FASEB Journal, 32(S1), 809.2-809.2. Search in Google Scholar

Silva, V., Nunes, J., Gomes, A., Capita, R., Alonso-Calleja, C., & Eduardo Pereira, J., et al. (2019). Detection of antibiotic resistance in escherichia coli strains: can fish commonly used in raw preparations such as sushi and sashimi constitute a public health problem?. Journal of food protection, 82(7), 1130-1134. Search in Google Scholar

Kenana, J., Langat, B., Kalicki, C., Inthavong, E., & Kanna, A. (2017). The structure of emre and its role in antibiotic resistance. The FASEB Journal, 31. Search in Google Scholar

Blair, D. J., & Burke, M. D. (2020). Modular synthesis enables molecular ju-jitsu in the fight against antibiotic resistance. Nature, 586(7827). Search in Google Scholar

Jin, L., Cao, F., Gao, Y., Zhang, C., Qian, Z., & Zhang, J., et al. (2023). Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Advanced Materials(30), 35. Search in Google Scholar

Strotskaya, A., Savitskaya, E., Metlitskaya, A., Morozova, N., Datsenko, K., & Semenova, E., et al. (2017). The action of escherichia coli crispr-cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Research(4), 45. Search in Google Scholar

Jalal, B., Ozge, E., Romain, R., Doucouré Balla, Caillet Céline, & Angela, M., et al. (2018). On the infectivity of bacteriophages in polyelectrolyte multilayer films: inhibition or preservation of their bacteriolytic activity?. ACS Applied Materials & Interfaces, 10, acsami.8b10424-. Search in Google Scholar

eISSN:
2444-8656
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, andere, Mathematik, Angewandte Mathematik, Allgemeines, Physik