Uneingeschränkter Zugang

Generative Adversarial Network-based Data Recovery Method for Power Systems


Zitieren

xiaojuan, & Ma. (2017). Research and implementation of computer data security management system. Procedia Engineering, 174(Complete), 1371-1379. Search in Google Scholar

Jacyna, M., Gobiowski, P., Emilian Szczepański, & Wasiak, M. (2017). Efficacy of data security in managing the database of simmag 3d system - sciencedirect. Procedia Engineering, 187, 526-531. Search in Google Scholar

Thams, F., Venzke, A., Eriksson, R., & Chatzivasileiadis, S. (2019). Efficient database generation for data-driven security assessment of power systems. IEEE Transactions on Power Systems, 1-1. Search in Google Scholar

Levitin, G., Xing, L., & Dai, Y. (2018). Co-residence based data vulnerability vs. security in cloud computing system with random server assignment. European Journal of Operational Research, S0377221717310755. Search in Google Scholar

Li, J., Wang, L., Lin, X., & Qu, S. (2020). Analysis of china’s energy security evaluation system: based on the energy security data from 30 provinces from 2010 to 2016. Energy, 198(May1), 117346.1-117346.11. Search in Google Scholar

Xie, L., Hang, F., Guo, W., Lv, Y., Ou, W., & Shibly, F. H. A. (2021). Network security defence system based on artificial intelligence and big data technology. International journal of high performance systems architecture(3/4), 10. Search in Google Scholar

Tzovaras, D. (2022). Data protection and cybersecurity certification activities and schemes in the energy sector. Electronics, 11. Search in Google Scholar

Sah, G., Banerjee, S., & Singh, S. (2023). Intrusion detection system over real-time data traffic using machine learning methods with feature selection approaches. International Journal of Information Security. Search in Google Scholar

Mayuranathan, M., Saravanan, S. K., Muthusenthil, B., & Samydurai, A. (2022). An efficient optimal security system for intrusion detection in cloud computing environment using hybrid deep learning technique. Advances in engineering software. Search in Google Scholar

Das, S., Panda, K. G., Sen, D., & Arif, W. (2019). Risk-aware last-minute data backup in inter-datacenter networks. IET Networks, 8(5). Search in Google Scholar

Deng, R., Xiao, G., & Lu, R. (2017). Defending against false data injection attacks on power system state estimation. IEEE Transactions on Industrial Informatics. Search in Google Scholar

Lee, SH, Son, KS, Jung, & Kang, et al. (2017). Risk assessment of safety data link and network communication in digital safety feature control system of nuclear power plant. ANN NUCL ENERGY, 2017,108(-), 394-405. Search in Google Scholar

Zhu, L., & Hill, D. J. (2022). Data/model jointly driven high-quality case generation for power system dynamic stability assessment. IEEE transactions on industrial informatics(8), 18. Search in Google Scholar

Yang, J., Zhang, W. A., & Guo, F. (2022). Distributed kalman-like filtering and bad data detection in the large-scale power system. IEEE transactions on industrial informatics(8), 18. Search in Google Scholar

Wiese, F., Schlecht, I., Bunke, W. D., Gerbaulet, C., Hirth, L., & Jahn, M., et al. (2019). Open power system data – frictionless data for electricity system modelling. Applied Energy, 236(FEB.15), 401-409. Search in Google Scholar

Ding, Y., Ma, K., Pu, T., Wang, X., & Zhang, D. (2021). A deep learning-based classification scheme for false data injection attack detection in power system. Electronics, 10(12), 1459. Search in Google Scholar

Anwar, A., Mahmood, A., Ray, B., Mahmud, M. A., & Tari, Z. (2020). Machine learning to ensure data integrity in power system topological network database. Electronics, 9. Search in Google Scholar

Wu, S., Zhu, W., Mao, B., & Li, K. C. (2017). Pp: popularity-based proactive data recovery for hdfs raid systems. Future Generation Computer Systems, 86(SEP.), 1146-1153. Search in Google Scholar

Sahib, H. I., Rahman, N. H. A., Alqasi, A. K., & Attiah, M. L. (2021). Comparison of data recovry techniques on (mft) between aho-crosick and logical data recovery based on efficiency. TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 19, No. 1(February 2021), 73-78. Search in Google Scholar

Barabadi, A., & Ayele, Y. Z. (2018). Post-disaster infrastructure recovery: prediction of recovery rate using historical data. Reliability Engineering & System Safety, 169(jan.), 209-223. Search in Google Scholar

Nazari, MahyarZadeh, Reza TaghiAsghari, Seyyed AmirMarvasti, Mohammadreza BineshRahmani, Amir M. (2019). Frcd: fast recovery of compressible data in flash memories. Computers and Electrical Engineering, 78. Search in Google Scholar

Zhu, Y., Samsudin, J., Kanagavelu, R., Zhang, W., Wang, L., & Aye, T. T., et al. (2020). Fast recovery mapreduce (far-mr) to accelerate failure recovery in big data applications. Journal of supercomputing(5), 76. Search in Google Scholar

Xue, A., Kong, H., Lao, Y., Xu, F., Wang, L., & Wei, G., et al. (2020). Method of amplitude data recovery in pmu measurements that considers synchronisation errors. IET generation, transmission & distribution(14-24). Search in Google Scholar

eISSN:
2444-8656
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, andere, Mathematik, Angewandte Mathematik, Allgemeines, Physik