Uneingeschränkter Zugang

A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics


Zitieren

Almeida, L. (1994). The fractional Fourier transform and time-frequency representations, IEEE Transactions on SignalProcessing 42(11): 3084-3091.10.1109/78.330368Search in Google Scholar

Almeida, L. (1997). Product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters4(1): 15-17.10.1109/97.551689Search in Google Scholar

Barshan, B., Ozaktas, H. and Kutey, M. (1997). Optimal filters with linear canonical transformations, Optics Communications 135(1-3): 32-36.10.1016/S0030-4018(96)00598-6Search in Google Scholar

Bastiaans, M. (1979). Wigner distribution function and its application to first-order optics, Journal of Optical Societyof America 69(12): 1710-1716.10.1364/JOSA.69.001710Search in Google Scholar

Bernardo, L. (1996). ABCD matrix formalism of fractional Fourier optics, Optical Engineering 35(03): 732-740.10.1117/1.600641Search in Google Scholar

Bouachache, B. and Rodriguez, F. (1984). Recognition of time-varying signals in the time-frequency domain by means of the Wigner distribution, IEEE International Conferenceon Acoustics, Speech, and Signal Processing, SanDiego, CA, USA, Vol. 9, pp. 239-242.Search in Google Scholar

Classen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980). The Wigner distribution: A tool for time-frequency signal analysis, Part I: Continuous time signals, Philips Journalof Research 35(3): 217-250.Search in Google Scholar

Cohen, L. (1989). Time-frequency distributions: A review, Proceedingsof the IEEE 77(7): 941-981.10.1109/5.30749Search in Google Scholar

Collins, S. (1970). Lens-system diffraction integral written in terms of matrix optics, Journal of Optical Society of America60(9): 1168-1177.10.1364/JOSA.60.001168Search in Google Scholar

Deng, B., Tao, R. and Wang, Y. (2006). Convolution theorem for the linear canonical transform and their applications, Science in China, Series F: Information Sciences49(5): 592-603.10.1007/s11432-006-2016-4Search in Google Scholar

Gdawiec, K. and Domańska, D. (2011). Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes, International Journalof Applied Mathematics and Computer Science 21(4): 757-767, DOI: 10.2478/v10006-011-0060-8.10.2478/v10006-011-0060-8Search in Google Scholar

Goel, N. and Singh, K. (2011). Analysis of Dirichlet, generalized Hamming and triangular window functions in the linear canonical transform domain, Signal, Image andVideo Processing DOI: 10.1007/s11760-011-0280-2.10.1007/s11760-011-0280-2Search in Google Scholar

Healy, J. and Sheridan, J. (2008). Cases where the linear canonical transform of a signal has compact support or is band-limited, Optics Letters 33(3): 228-230.10.1364/OL.33.000228Search in Google Scholar

Healy, J. and Sheridan, J.T. (2009). Sampling and discretization of the linear canonical transform, Signal Processing89(4): 641-648.10.1016/j.sigpro.2008.10.011Search in Google Scholar

Hennelly, B. and Sheridan, J.T. (2005a). Fast numerical algorithm for the linear canonical transform, Journal ofOptical Society of America A 22(5): 928-937.10.1364/JOSAA.22.00092815898553Search in Google Scholar

Hennelly, B. and Sheridan, J.T. (2005b). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms, Journal of Optical Society of America A22(5): 917-927.10.1364/JOSAA.22.00091715898552Search in Google Scholar

Hlawatsch, F. and Boudreaux-Bartels, G.F. (1992). Linear and quadratic time-frequency signal representation, IEEE SignalProcessing Magazine 9(2): 21-67.10.1109/79.127284Search in Google Scholar

Hong-yi, F., Ren, H. and Hai-Liang, L. (2008). Convolution theorem of fractional Fourier transformation derived by representation transformation in quantum mechanics, Communication Theoretical Physics 50(3): 611-614.10.1088/0253-6102/50/3/15Search in Google Scholar

Hong-yi, F. and VanderLinde, J. (1989). Mapping of classical canonical transformations to quantum unitary operators, Physical Review A 39(6): 2987-2993.10.1103/PhysRevA.39.2987Search in Google Scholar

Hong-yi, F. and Yue, F. (2003). New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Communication Theoretical Physics39(1): 97-100.10.1088/0253-6102/39/1/97Search in Google Scholar

Hong-yi, F. and Zaidi, H. (1987). New approach for calculating the normally ordered form of squeeze operators, PhysicalReview D 35(6): 1831-1834.10.1103/PhysRevD.35.1831Search in Google Scholar

Hua, J., Liu, L. and Li, G. (1997). Extended fractional Fourier transforms, Journal of Optical Society of AmericaA 14(12): 3316-3322.10.1364/JOSAA.14.003316Search in Google Scholar

Huang, J. and Pandić, P. (2006). Dirac Operators in RepresentationTheory, Birkhauser/Springer, Boston, MA/ New York, NY.Search in Google Scholar

James, D. and Agarwal, G. (1996). The generalized Fresnel transform and its applications to optics, Optics Communications126(4-6): 207-212.10.1016/0030-4018(95)00708-3Search in Google Scholar

Kiusalaas, J. (2010). Numerical Methods in Engineering withPython, Cambridge University Press, New York, NY.10.1017/CBO9780511812224Search in Google Scholar

Koc, A., Ozaktas, H., Candan, C. and Kutey, M. (2008). Digital computation of linear canonical transforms, IEEE Transactionson Signal Processing 56(6): 2383-2394.10.1109/TSP.2007.912890Search in Google Scholar

Li, B., Tao, R. and Wang, Y. (2007). New sampling formulae related to linear canonical transform, Signal Processing87(5): 983-990.10.1016/j.sigpro.2006.09.008Search in Google Scholar

Moshinsky, M. and Quesne, C. (1971). Linear canonical transformations and their unitary representations, Journalof Mathematical Physics 12(8): 1772-1783.10.1063/1.1665805Search in Google Scholar

Namias, V. (1979). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of AppliedMathematics 25(3): 241-265.10.1093/imamat/25.3.241Search in Google Scholar

Nazarathy, M. and Shamir, J. (1982). First-order optics-a canonical operator representation: Lossless systems, Journalof Optical Society of America A 72(3): 356-364.10.1364/JOSA.72.000356Search in Google Scholar

Ogura, A. (2009). Classical and quantum ABCD-transformation and the propagation of coherent and Gaussian beams, Journalof Physics, B: Atomic, Molecular and Optical Physics42(14): 145504, DOI:10.1088/0953-4075/42/14/145504.10.1088/0953-4075/42/14/145504Search in Google Scholar

Ogura, A. and Sekiguchi, M. (2007). Algebraic structure of the Feynman propagator and a new correspondence for canonical transformations, Journal of MathematicalPhysics 48(7): 072102, DOI:10.1063/1.2748378.10.1063/1.2748378Search in Google Scholar

Oktem, F. and Ozaktas, H. (2010). Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: A generalization of the space-bandwidth product, Journal of Optical Societyof America A 27(8): 1885-1895.10.1364/JOSAA.27.00188520686595Search in Google Scholar

Ozaktas, H., Barshan, B., Mendlovic, D. and Onural, L. (1994). Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms, Journal of Optical Society ofAmerica A 11(2): 547-559. 10.1364/JOSAA.11.000547Search in Google Scholar

Ozaktas, H., Kutey, M. and Zalevsky, Z. (2000). The FractionalFourier Transform with Applications in Optics and SignalProcessing, John Wiley and Sons, New York, NY.Search in Google Scholar

Palma, C. and Bagini, V. (1997). Extension of the Fresnel transform to ABCD systems, Journal of Optical Societyof America A 14(8): 1774-1779.10.1364/JOSAA.14.001774Search in Google Scholar

Pei, S. and Ding, J.J. (2001). Relations between fractional operations and time-frequency distributions, and their applications, IEEE Transactions on Signal Processing49(8): 1638-1655.10.1109/78.934134Search in Google Scholar

Pei, S. and Ding, J.J. (2002a). Closed-form discrete fractional and affine Fourier transforms, IEEE Transactions on SignalProcessing 48(5): 1338-1353.10.1109/78.839981Search in Google Scholar

Pei, S. and Ding, J.J. (2002b). Eigenfunctions of linear canonical transform, IEEE Transactions on Signal Processing50(1): 11-26.10.1109/78.972478Search in Google Scholar

Portnoff, M. (1980). Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Transactions on Acoustics, Speech and Signal Processing28(1): 55-69.10.1109/TASSP.1980.1163359Search in Google Scholar

Puri, R. (2001). Mathematical Methods of Quantum Optics, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-540-44953-9Search in Google Scholar

Sharma, K. and Joshi, S. (2006). Signal separation using linear canonical and fractional Fourier transforms, Optics Communications265(2): 454-460.10.1016/j.optcom.2006.03.062Search in Google Scholar

Sharma, K. and Joshi, S. (2007). Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to super resolution, Optics Communications278(1): 52-59.10.1016/j.optcom.2007.06.022Search in Google Scholar

Singh, A. and Saxena, R. (2012). On convolution and product theorems for FRFT, Wireless Personal Communications65(1): 189-201.10.1007/s11277-011-0235-5Search in Google Scholar

Stern, A. (2006). Sampling of linear canonical transformed signals, Signal Processing 86(7): 1421-1425. 10.1016/j.sigpro.2005.07.031Search in Google Scholar

Świercz, E. (2010). Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution, International Journalof Applied Mathematics and Computer Science 20(1): 135-147, DOI: 10.2478/v10006-010-0010-x.10.2478/v10006-010-0010-xSearch in Google Scholar

Shin, Y.J. and Park, C.H. (2011). Analysis of correlation based dimension reduction methods, International Journal of AppliedMathematics and Computer Science 21(3): 549-558, DOI: 10.2478/v10006-011-0043-9.10.2478/v10006-011-0043-9Search in Google Scholar

Tao, R., Li, B., Wang, Y. and Aggrey, G. (2008). On sampling of bandlimited signals associated with the linear canonical transform, IEEE Transactions on Signal Processing56(11): 5454-5464.10.1109/TSP.2008.929333Search in Google Scholar

Tao, R., Qi, L. and Wang, Y. (2004). Theory and Applicationsof the Fractional Fourier Transform, Tsinghua University Press, Beijing.Search in Google Scholar

Wei, D., Ran, Q. and Li, Y. (2012). A convolution and correlation theorem for the linear canonical transform and its application, Circuits, Systems, and Signal Processing31(1): 301-312.10.1007/s00034-011-9319-4Search in Google Scholar

Wei, D., Ran, Q., Li, Y., Ma, J. and Tan, L. (2009). A convolution and product theorem for the linear canonical transform, IEEE Signal Processing Letters 16(10): 853-856.10.1109/LSP.2009.2026107Search in Google Scholar

Wigner, E. (1932). On the quantum correlation for thermodynamic equilibrium, Physical Review 40(5): 749-759.10.1103/PhysRev.40.749Search in Google Scholar

Wolf, K. (1979). Integral Transforms in Science and Engineering, Plenum Press, New York, NY.10.1007/978-1-4757-0872-1Search in Google Scholar

Zayad, A. (1998). A product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters5(4): 101-103.10.1109/97.664179Search in Google Scholar

Zhang, W., Feng, D. and Gilmore, R. (1990). Coherent states: Theory and some applications, Reviews of Modern Physics62(4): 867-927. 10.1103/RevModPhys.62.867Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Angewandte Mathematik