Uneingeschränkter Zugang

Nonlinear state observers and extended Kalman filters for battery systems


Zitieren

Aylor, J., Thieme, A. and Johnso, B. (1992). A battery state-of-charge indicator for electric wheelchairs, IEEETransactions on Industrial Electronics 39(5): 398-409.10.1109/41.161471Search in Google Scholar

Benger, R., Jiang, M., Beck, H., Wenzl, H., Ohms, D. and Schaedlich, G. (2009). Electrochemical and thermal modeling of lithium-ion cells for use in HEV or EV application, World Electric Vehicle Journal3: 1-10, http://www.evs24.org/wevajournal/vol3/title.html.Search in Google Scholar

Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M. and Scarsi, R. (2001). Discrete-time battery models for system-level low-power design, IEEE Transactionson Very Large Scale Integration (VLSI) Systems9(5): 630-640.10.1109/92.953497Search in Google Scholar

Bhangu, B., Bentley, P., Stone, D. and Bingham, C. (2005). Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles, IEEE Transactions on Vehicular Technology54(3): 783-794.10.1109/TVT.2004.842461Search in Google Scholar

Bo, C., Zhifeng, B. and Binggang, C. (2008). State of charge estimation based on evolutionary neural network, Journal of Energy Conversion and Management49(10): 2788-2794.10.1016/j.enconman.2008.03.013Search in Google Scholar

Buller, S., Thele, M., Doncker, R. and Karden, E. (2005). Impedance based simulation models of supercapacitors and Li-ion batteries for power electronic applications, IEEE Transactions on Industry Applications41(3): 742-747.10.1109/TIA.2005.847280Search in Google Scholar

Chan, C., Lo, E. and Weixiang, S. (2000). The available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles, Journal of PowerSources 87(1-2): 201-204.10.1016/S0378-7753(99)00502-9Search in Google Scholar

Chen, M. and Rincon-Mora, G. (2006). Accurate electrical battery model capable of predicting runtime and I-V performance, IEEE Transactions on Energy Conversion21(2): 504-511.10.1109/TEC.2006.874229Search in Google Scholar

Chiasson, J. and Vairamohan, B. (2005). Estimating the state of charge of a battery, IEEE Transactions on Control SystemsTechnology 13(3): 465-470.10.1109/TCST.2004.839571Search in Google Scholar

Erdinc, O., Vural, B. and Uzunoglu, M. (2009). A dynamic lithium-ion battery model considering the effects of temperature and capacity fading, International Conferenceon Clean Electrical Power, Capri, Italy, pp. 383-386.Search in Google Scholar

Gomadam, P., Weidner, J., Dougal, R. and White, R. (2002). Mathematical modeling of lithium-ion and nickel battery systems, Journal of Power Sources 110(2): 267-284.10.1016/S0378-7753(02)00190-8Search in Google Scholar

Gu, W. and Wang, C. (2000). Thermal-electrochemical modeling of battery systems, Journal of The ElectrochemicalSociety 147(8): 2910-2922.10.1149/1.1393625Search in Google Scholar

Isidori, A. (1995). Nonlinear Control Systems, 1: An Introduction, Springer-Verlag, Berlin.10.1007/978-1-84628-615-5_1Search in Google Scholar

Johnson, V. (2002). Battery performance models in ADVISOR, Journal of Power Sources 110(2): 321-329.10.1016/S0378-7753(02)00194-5Search in Google Scholar

Junping, W., Jingang, G. and Lei, D. (2009). An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack, Journal of Energy Conversionand Management 50(12): 3182-3186.10.1016/j.enconman.2009.08.015Search in Google Scholar

Kim, I. (2006). The novel state of charge estimation method for lithium battery using sliding mode observer, Journal ofPower Sources 163(1): 584-590.10.1016/j.jpowsour.2006.09.006Search in Google Scholar

Klein, R., Chaturvedi, N., Christensen, J., Ahmed, J., Findeisen, R. and Kojic, A. (2012). Electrochemical model based observer design for a lithium-ion battery, IEEE Transactionson Control Systems Technology PP(99): 1-13.Search in Google Scholar

Krener, J. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Journal of Systems andControl Letters 3(1): 47-52.10.1016/0167-6911(83)90037-3Search in Google Scholar

Leska, M., Prabel, R., Rauh, A. and Aschemann, H. (2011). Simulation and optimization of the longitudinal dynamics of parallel hybrid railway vehicles, in E. Schnieder and G. Tarnai (Eds.), FORMS/FORMAT 2010, Springer, Berlin/Heidelberg, pp. 155-164.10.1007/978-3-642-14261-1_16Search in Google Scholar

Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control76(9-10): 924-941.10.1080/0020717031000099029Search in Google Scholar

Mohinder, S. and Andrews, P. (2001). Kalman Filtering:Theory and Practice-Using MATLAB, 2nd Edn., Wiley-Interscience, Hoboken, NJ.Search in Google Scholar

Pang, S., Farrell, J., Du, J. and Barth, M. (2001). Battery state-of-charge estimation, American Control Conference,Arlington, VA, USA, Vol. 2, pp. 1644-1649.Search in Google Scholar

Plett, G. (2004a). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 1: Background, Journal of Power Sources134(2): 252-261.10.1016/j.jpowsour.2004.02.031Search in Google Scholar

Plett, G. (2004b). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 2: Modeling and identification, Journal of PowerSources 134(2): 262-276.10.1016/j.jpowsour.2004.02.032Search in Google Scholar

Plett, G. (2004c). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 3: State and parameter estimation, Journal of PowerSources 134(2): 277-292.10.1016/j.jpowsour.2004.02.033Search in Google Scholar

Rauh, A. and Aschemann, H. (2012). Sensitivity-based state and parameter estimation for lithium-ion battery systems, 9th International Conference on System Identificationand Control Problems, SICPRO’12, Moscow, Russia, pp. 469-485.Search in Google Scholar

Rauh, A., Minisini, J. and Hofer, E. (2009). Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties, InternationalJournal of Applied Mathematics and Computer Science19(3): 425-439, DOI: 10.2478/v10006-009-0035-1.10.2478/v10006-009-0035-1Search in Google Scholar

Rauh, A., Weitschat, R. and Aschemann, H. (2010). Modellgestützter Beobachterentwurf zur Betriebszustands- und Alterungserkennung für Lithium-Ionen-Batterien, VDI-Berichte 2105: InnovativeFahrzeugantriebe 2010 Die Vielfalt der Mobilitt: VomVerbrenner bis zum E-Motor: 7. VDI-Tagung InnovativeFahrzeugantriebe, Dresden, Germany, pp. 377-382.Search in Google Scholar

Remmlinger, J., Buchholz, M., Meiler, M., Bernreuter, P. and Dietmayer, K. (2011). State-of-health monitoring of lithium-ion batteries in electric vehicles by on board internal resistance estimation, Journal of Power Sources196(12): 5357-5363.10.1016/j.jpowsour.2010.08.035Search in Google Scholar

Rong, P. and Pedram, M. (2006). An analytical model for predicting the remaining battery capacity of lithium-ion batteries, IEEE Transactions on Very Large Scale Integration(VLSI) Systems 14(5): 441-451.10.1109/TVLSI.2006.876094Search in Google Scholar

Salameh, Z., Casacca, M. and Lynch,W. (1992). A mathematical model for lead-acid batteries, IEEE Transactions on EnergyConversion 7(1): 93-98.10.1109/60.124547Search in Google Scholar

Serrao, L., Chehab, Z., Guezennee, Y. and Rizzoni, G. (2005). An aging model of Ni-MH batteries for hybrid electric vehicles, IEEE Conference on Vehicle Power and Propulsion,Chicago, IL, USA, pp. 78-85.Search in Google Scholar

Shen, Y. (2010). Adaptive online state-of-charge determination based on neuro-controller and neural network, Journal ofEnergy Conversion and Management 51(5): 1093-1098.10.1016/j.enconman.2009.12.015Search in Google Scholar

Smith, K., Rahn, C. and Wang, C. (2010). Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries, IEEE Transactionson Control Systems Technology 3(18): 654-663.10.1109/TCST.2009.2027023Search in Google Scholar

Stengel, R. (1994). Optimal Control and Estimation, Dover Publications, Inc, Mineola, NY.Search in Google Scholar

Wang, C. and Srinivasan, V. (2002). Computational battery dynamics (CBD)-electrochemical/thermal coupled modeling and multi-scale modeling, Journal of PowerSources 110(2): 364-376.10.1016/S0378-7753(02)00199-4Search in Google Scholar

Xu, D., Jiang, B., Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model, International Journal of Applied Mathematicsand Computer Science 22(1): 183-196, DOI: 10.2478/v10006-012-0014-9.10.2478/v10006-012-0014-9Search in Google Scholar

Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters9(2): 149-156.10.1016/0167-6911(87)90021-1Search in Google Scholar

Zhang, F., Liu, G. and Fang, L. (2008). A battery state of charge estimation method using sliding mode observer, 7th WorldCongress on Intelligent Control and Automation, WCICA2008, Chongqing, China, pp. 989-994.Search in Google Scholar

Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of AppliedMathematics and Computer Science 22(3): 507-522, DOI: 10.2478/v10006-012-0038-1. 10.2478/v10006-012-0038-1Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Angewandte Mathematik