Uneingeschränkter Zugang

Permanent Pacemaker Implantation: Early Post-Implantation Data


Zitieren

Breur JM, Udink Ten Cate FE et al. Pacemaker therapy in isolated congenital complete atrioventricular block. Pacing. Clin Electrophysiol. 2002; 25:1685-1691.Search in Google Scholar

Vanagt WY, Verbeek XA, Delhaas T et al. The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. Pacing Clin Electrophysiol. 2004, 27:837-843.Search in Google Scholar

Healey JS, Toff WD, Lamas GA, et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation. 2006, 114:11-17.Search in Google Scholar

Boriani G, Tukkie R, Manolis AS et al. MINERVA Investigators. Atrial antitachycardia pacing and managed ventricular pacing in bradycardia patients with paroxysmal or persistent atrial tachyarrhythmias: the MINERVA randomized multicentre international trial. Eur Heart J. 2014, 35:2352-2362.Search in Google Scholar

Burri H, Starck C, Auricchio A et al. EHRA expert consensus statement and practical guide on optimal implantation technique for conventional pacemakers and implantable cardioverter-defibrillators: endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin-American Heart Rhythm Society (LAHRS). Europace. 2021, doi: 10.1093/europace/euaa367.Search in Google Scholar

Phyo AZZ, Freak-Poli R, Craig H et al. Quality of life and mortality in the general population: a systematic review and meta-analysis. BMC Public Health. 2020, 20(1):1596.Search in Google Scholar

Martinez R, Morsch P, Soliz P, et al. Life expectancy, healthy life expectancy, and burden of disease in older people in the Americas, 1990-2019: a population-based study. Rev Panam Salud Publica. 2021; 30(9):45-114.Search in Google Scholar

Li C, Li C, Bai W, et al. Value of three-dimensional speckle-tracking in detecting left ventricular dysfunction in patients with aortic valvular diseases. J Am Soc Echocardiogr. 2013; 26:1245-52.Search in Google Scholar

Xu H, Li J, Bao Z, et al. Early Change in Global Longitudinal Strain is an Independent Predictor of Left Ventricular Adverse Remodelling in Patients with Ventricular Apical Pacing. Heart, Lung and Circulation. 2019; 28(12):1780-1787. https://doi.org/10.1016/j.hlc.2018.11.004Search in Google Scholar

Cevher V, Karaaslan M, Akilli R, et al. Evaluation of the relationship between dyssynchrony and myocardial fibrosis markers in patients with cardiac resynchronization therapy. Ann Med Res. 2020; 27(4):1234-40. doi.org/10.1016/j.amjcard.2018.03.159Search in Google Scholar

Strauss D, Selvester R, Wagner G. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011; 107:927-934. https://doi.org/10.1016/j.amjcard.2010.11.010Search in Google Scholar

Khurshid S, Epstein AE, Verdino RJ, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy. Heart Rhythm. 2014; 11:1619-1625. http://dx.doi.org/10.1016/j.hrthm.2014.05.040Search in Google Scholar

Kiehl EL, Makki T, Kumar R, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016; 13:2272-2278.Search in Google Scholar

Bansal R, Parakh N, Gupta A et al. Incidence and predictors of pacemaker-induced cardiomyopathy with comparison between apical and non-apical right ventricular pacing sites. J Interv Card Electrophysiol. 2019, 56:63-70. doi.org/10.1007/s10840-019-00602-2Search in Google Scholar

Hussain M, Furuya-Kanamori L, Kaye G, et al. The Effect of Right Ventricular Apical and Nonapical Pacing on the Short- and Long-Term Changes in Left Ventricular Ejection Fraction: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Pacing and Clinical Electrophysiology. 2015; 38(9):1121-1136. doi:10.1111/pace.1268110.1111/pace.12681Search in Google Scholar

Cano O, Andres A, Alonso P, et al. Incidence and predictors of clinically relevant cardiac perforation associated with systematic implantation of active-fixation pacing and defibrillation leads: a single-centre experience with over 3800 implanted leads. Europace. 2017; 19:96-102.Search in Google Scholar

Zanon F, Ellenbogen K, Dandamudi G et al. Permanent Hisbundle pacing: a systematic literature review and meta-analysis. Europace. 2018; 20:1819-1826. https://doi.org/10.1093/europace/euy058.Search in Google Scholar

Leong DP, Mitchell AM, Salna I et al. Long-term mechanical consequences of permanent right ventricular pacing: Effect of pacing site. J Cardiovasc Electrophysiol. 2010; 21:1120-1126.Search in Google Scholar

Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S et al. Right ventricular apex versus right ventricular outflow tract pacing: Prospective, randomised, long-term clinical and echocardiographic evaluation. Kardiol Pol. 2006; 64:1082-1091.Search in Google Scholar

Flevari P, Theodorakis G, Leftheriotis D. Serum markers of deranged myocardial collagen turnover: Their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am. Heart J. 2012; 164:530-537. https://doi.org/10.1016/j.ahj.2012.07.006Search in Google Scholar

Cano O, Osca J, Sancho-Tello MJ et al. Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing. Am J Cardiol. 2010; 105:1426–1432.Search in Google Scholar

Ferrario C. Cardiac remodelling and RAS inhibition. Therapeutic Advances in Cardiovascular Disease. 2016; 10(3):162-171. doi: 10.1177/1753944716642677Search in Google Scholar

Ahmed M, Gorcsan 3rd J, Marek J, et al. Right ventricular apical pacing-induced left ventricular dyssynchrony is associated with a subsequent decline in ejection fraction. Heart Rhythm. 2014; 11:602-8.Search in Google Scholar

Kai H, Mori T, Tokuda K, et al. Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res. 2006; 29:711-718.Search in Google Scholar

Jong S, Veen T, Rijen H, et al. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol, 2011; 57:630-638. doi: 10.1097/FJC.0b013e318207a35fSearch in Google Scholar

Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011; 89:265-272. doi:10.1093/cvr/cvq308Search in Google Scholar

Suthahar N, Meijers WC, Silljé HHW, et al. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017; 14:235-250.Search in Google Scholar

Besler C, Lang D, Urban D et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ Heart Fail. 2017;10(3). DOI:10.1161/CIRCHEARTFAILURE.116.003804Search in Google Scholar

Schirone L, Forte M, Palmerio S, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017; (3920195):1-16.Search in Google Scholar

Ziegler KA, Ahles A, Wille T, et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res. 2018; 114:291-299.Search in Google Scholar

Kang M, Ragan BG, Park JH. Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train. 2008; 43(2):215-221Search in Google Scholar

Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3):233-270Search in Google Scholar

Lee M, Dae M, Langberg J, et al. Effects of long-term right ventricular apica pacing on left ventricular perfusion, innervation, function and histology. Journal of the American College of Cardiology. 1994; 24(1):225-232. https://doi.org/10.1016/0735-1097(94)90567-3Search in Google Scholar

Ravassa S, Ballesteros G, Lopez B, et al. Combination of circulating type I collagen-related biomarkers is associated with atrial fibrillation. J. Am. Coll. Cardiol. 2019; 73: 1398-141.Search in Google Scholar

Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000; 106:55-62.Search in Google Scholar

Spinale FG: Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res. 2002; 90:520-530.Search in Google Scholar

Lin L, Lai L, Lin C et al. Left Ventricular Extracellular Matrix Remodeling in Dogs with Right Ventricular Apical Pacing. J Cardiovasc Electrophysiol, 2010; 21(10):1142-1149. doi:10.1111/j.1540-8167.2010.01765.xSearch in Google Scholar

Kong P, Christia P, Frangogiannis N. The pathogenesis of cardiac fibrosis. Cell Mol. Life Sci. 2014; 71:549-574. https://doi.org/10.1007/s00018-013-1349-6Search in Google Scholar

Jarvelainen H, Sainio A, Koulu M, et al. Extracellular matrix molecules: Potential targets in pharmacotherapy. Pharmacol. Rev. 2009; 61:198-223. doi.org/10.1124/pr.109.001289Search in Google Scholar

Espeland T, Lunde I, Amundsen B, et al. Myocardial fibrosis. Tidsskriftet. 2018; 138. doi: 10.4045/tidsskr.17.1027Search in Google Scholar

Segura A, Frazier O, and Buja L. Fibrosis and heart failure. Heart Fail. Rev. 2014; 19:173-185. doi: 10.1007/s10741-012-9365-4Search in Google Scholar

Prockop D and Kivirikko K. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995; 64:403-434. doi: 10.1146/annurev.bi.64.070195.002155Search in Google Scholar

Lopez B, Gonzalez A, Ravassa S et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J. Am. Coll. Cardiol. 2015; 65:2449-2456. doi: 10.1016/j.jacc.2015.04.026Search in Google Scholar

Uchinaka A, Yoshida M, Tanaka K, et al. Overexpression of collagen type III in injured myocardium prevents cardiac systolic dysfunction by changing the balance of collagen distribution. The Journal of Thoracic and Cardiovascular Surgery. 2018; 156(1):217-226. https://doi.org/10.1016/j.jtcvs.2018.01.097Search in Google Scholar

Riekki R, Harvima, JI, Ristile J, Oikarinen A. The production of collagen and the activity of mast-cell chymase increase in human skin after irradiation therapy. Experimental Dermatology. 2004; 13(6):364-371. https://doi.org/10.1111/j.0906-6705.2004.00164.xSearch in Google Scholar

Haukipuro K, Risteli L, Kairaluoma M, et al. Aminoterminal propeptide of type III procollagen in healing wound in humans. Ann Surg 1987; 206:752-756. doi: 10.1097/00000658-198712000-00011Search in Google Scholar

Zile M, Desantis S, Baicu C et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail 2011; 4:246-256. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958199Search in Google Scholar

Michalski B, Trzcinski P, Kupczynska K et al, The differences in the relationship between diastolic dysfunction, selected biomarkers and collagen turn-over in heart failure patients with preserved and reduced ejection fraction. Cardiol J. 2017; 24:35-42. DOI: 10.5603/CJ.a2016.0098Search in Google Scholar

Duprez D, Gross M, Kizer J, et al. Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (Multi – Ethnic Study of Atherosclerosis). J Am Heart Assoc. 2018; 7:e007885. https://doi.org/10.1161/JAHA.117.007885Search in Google Scholar

Löfsjögård J, Thomas K, Javier D et al. Biomarkers of collagen type I metabolism are related to B-type natriuretic peptide, left ventricular size, and diastolic function in heart failure. J Cardiovasc Med, 2014; 15(6):463-469; doi: 10.2459/01. JCM.0000435617.86180.0Search in Google Scholar

Flevari P, Leftheriotis D, Fountoulaki K, et al. Long-term nonoutflow septal versus apical right ventricular pacing: Relation to left ventricular dyssynchrony. Pacing Clin Electrophysiol. 2009; 32:354-362.Search in Google Scholar

Velagaleti R, Vasan R. Heart failure in the twenty-first century: is it a coronary artery disease or hypertension problem? Cardiol Clin. 2007; 25:487-495. doi.org/10.1016/j.ccl.2007.08.010Search in Google Scholar

McMurray J, Adamopoulos S, Anker S et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012; 33:1787-1847. DOI: 10.1093/eurheartj/ehs104Search in Google Scholar

eISSN:
2719-5384
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Immunologie, Klinische Medizin, andere