Uneingeschränkter Zugang

The Endogenous Cannabinoid and the Nitricoxidergic Systems Differently Influence Heat and Cold Stress-Induced Analgesia


Zitieren

1. Pacàk K, Palkovits M. Stressor Specificity of Central Neuroendocrine Responses: Implications for Stress-Related Disorders. Endo Rev. 2001; 22(4):502-548. https://doi.org/10.1210/edrv.22.4.0436.10.1210/edrv.22.4.0436Search in Google Scholar

2. Butler RK, Finn DP. Stress-induced analgesia. Progress in Neurobiology. 2009; 88(3):184-202. https://doi.org/10.1016/j.pneurobio.2009.04.003.10.1016/j.pneurobio.2009.04.003Search in Google Scholar

3. Galina ZH, Sutherland CJ, Amit Z. Effects of heat-stress on behavior and the pituitary adrenal axis in rats. Pharmacol Biochem Behav. 1983; 19(2):251-256. https://doi.org/10.1016/0091-3057(83)90048-5.10.1016/0091-3057(83)90048-5Search in Google Scholar

4. Finn DP. Endocannabinoid-mediated modulation of stress responses: Physiological and pathophysiological significance. Immunobiology. 2010; 215(8):629-646. https://doi.org/10.1016/j.imbio.2009.05.011.10.1016/j.imbio.2009.05.01119616342Search in Google Scholar

5. Cury Y, Picolo G, Pacciari GV, et al. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011; 25(3):243-254. https://doi.org/doi:10.1016/j.niox.2011.06.004.10.1016/j.niox.2011.06.00421723953Search in Google Scholar

6. Devane WA, Dysarz FA, Johnson MR, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988; 34:605-613.Search in Google Scholar

7. Matsuda LA, Lolait SJ, Brownstein M et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990; 346(6284):561-564. https://doi.org/10.1038/346561a0.10.1038/346561a02165569Search in Google Scholar

8. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993; 365:61-65. https://doi.org/10.1038/365061a0.10.1038/365061a07689702Search in Google Scholar

9. Svíženská I, Dubový P, Šulcová A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures – a short review, Pharmacol Biochem Behav. 2008; 90(4):501-511. https://doi.org/10.1016/j.pbb.2008.05.010.10.1016/j.pbb.2008.05.01018584858Search in Google Scholar

10. Herkenham M, Lynn AB, Johnson MR, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991; 11(2):563-583. https://doi.org/10.1523/JNEUROSCI.11-02-00563.1991.10.1523/JNEUROSCI.11-02-00563.1991Search in Google Scholar

11. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system, in: R.G. Pertwee (Ed.), Cannabinoids. Handbook of Experimental Pharmacology 2005; vol. 168, Springer, Berlin, Heidelberg, pp. 299-325. https://doi.org/10.1007/3-540-26573-2_10.10.1007/3-540-26573-2_1016596779Search in Google Scholar

12. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992; 258(5090):946-949. https://doi.org/10.1126/science.1470919.10.1126/science.14709191470919Search in Google Scholar

13. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995; 215(1):89-97. https://doi.org/10.1006/bbrc.1995.2437.10.1006/bbrc.1995.24377575630Search in Google Scholar

14. Wilson RI and Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002; 296:678-682. https://doi.org/10.1126/science.1063545.10.1126/science.106354511976437Search in Google Scholar

15. Starowicz K, Malek N, Przewlocka B. Cannabinoid receptors and pain. WIREs: Membr. Transp. Signal. 2013; 2(3):121-132. https://doi.org/10.1002/wmts.83.10.1002/wmts.83Search in Google Scholar

16. Nakazi MU, Bauer T, Nickel M, et al. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000; 361(1):19-24. https://doi.org/10.1007/s002109900147.10.1007/s00210990014710651142Search in Google Scholar

17. Walker JM, Huang SM, Strangman NM, et al. Pain modulation by release of the endogenous cannabinoid anandamide. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96(21):12198-12203. https://dx.doi.org/10.1073%2Fpnas.96.21.12198.10.1073/pnas.96.21.121981843510518599Search in Google Scholar

18. Gorzalka BB, Hill MN, Hillard CJ. Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev. 2008; 32(6):1152-1160. https://dx.doi.org/10.1016/j.neubiorev.2008.03.004.10.1016/j.neubiorev.2008.03.00418433869Search in Google Scholar

19. Woodhams SG, Chapman V, Finn DP et al. The cannabinoid system and pain, Neuropharmacology 2017; online, doi: 10.1016/j. neuropharm.2017.06.015.Search in Google Scholar

20. Li Y, Zhang L, Wu Y, Zheng Q, et al. Cannabinoids-induced peripheral analgesia depends on activation of BK channels. Brain Research 2019; 17(11):23-28.10.1016/j.brainres.2019.01.00730615887Search in Google Scholar

21. Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chemico-Biological Interactions 2018; 293:77-88. https://dx.doi.org/10.1016/j.cbi.2018.07.018.10.1016/j.cbi.2018.07.01830040916Search in Google Scholar

22. Paradise WA, Vesper BJ, Goel A, et al. Nitric Oxide: Perspectives and Emerging Studies of a Well Known Cytotoxin. In J Mol Sci. 2010; 11(7):2715-2745. https://dx.doi.org/10.3390/ijms11072715.10.3390/ijms11072715292056320717533Search in Google Scholar

23. Freire MA, Guimaraes JS, Leal WG, et al. Pain modulation by nitric oxide in the spinal cord. Front Neurosci. 2009; 3(2):175-181. https://dx.doi.org/10.3389%2Fneuro.01.024.2009.10.3389/neuro.01.024.2009275162320011139Search in Google Scholar

24. Esplugues JV. NO as a signalling molecule in the nervous system. Br J Pharmacol. 2002; 135:1079-1095. https://dx.doi.org/10.1038/sj.bjp.0704569.10.1038/sj.bjp.0704569157323311877313Search in Google Scholar

25. Iziara FF, Galdino PM, De Oliveira LP, et al. Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide. 2015; 47:17-24. https://dx.doi.org/10.1111/cbdd.12838.10.1111/cbdd.1283827526659Search in Google Scholar

26. Hervera A, Leánez S, Pol O. The inhibition of the nitric oxide–cGMP–PKG–JNK signaling pathway avoids the development of tolerance to the local antiallodynic effects produced by morphine during neuropathic pain. Europ J of Pharmac. 2012; 685(1-3):42-51. https://dx.doi.org/10.1016/j.ejphar.2012.04.009.10.1016/j.ejphar.2012.04.00922546233Search in Google Scholar

27. Luce V, Solari JF, Rettori V, et al. The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide. Regulatory Peptides. 2014; 188:31-39. https://doi.org/10.1016/j.regpep.2013.12.004.10.1016/j.regpep.2013.12.00424342802Search in Google Scholar

28. Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: the plant of the thousand and one molecules. Front. Plant Sci. 2016; online, https://doi.org/10.3389/fpls.2016.00019.10.3389/fpls.2016.00019474039626870049Search in Google Scholar

29. Mastinu A, Premoli M, Ferrari-Toninelli G, et al. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm. Mol. Biol. Clin. Investig. 2018; online, https://doi.org/10.1515/hmbci-2018-0013.10.1515/hmbci-2018-001329601300Search in Google Scholar

30. Bonini SA, Premolia M, Tambaro S, et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol 2018; 227:300-315. https://doi.org/10.1016/j.jep.2018.09.004.10.1016/j.jep.2018.09.00430205181Search in Google Scholar

31. Seth, B. Non-opioid analgesics. Anaesthesia & Intensive Care Medicine 2019; 20(8):456-459. doi:10.1016/j.mpaic.2019.06.001.10.1016/j.mpaic.2019.06.001Search in Google Scholar

32. Zou S, Kumar U. Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hippocampus. Brain research 2015; 1622:114-126. https://doi.org/10.1016/j.brainres.2015.06.021.10.1016/j.brainres.2015.06.02126115586Search in Google Scholar

33. Bujalska-Zadrozny M, de Corde´ A, Pawlik K. Influence of nitric oxide synthase or cyclooxygenase inhibitors on cannabinoids activity in streptozotocin-induced neuropathy. Pharmacol Reports. 2015; 67(2):209-216. https://doi.org/10.1016/j.pharep.2014.08.023.10.1016/j.pharep.2014.08.02325712641Search in Google Scholar

34. Bujalska M. Effect of cannabinoid receptor agonists on streptozotocin-induced hyperalgesia in diabetic neuropathy. Pharmacology. 2008; 82(3):193-200. https://doi.org/10.1159/000156485.10.1159/00015648518810243Search in Google Scholar

35. Szabadits E, Cserep C, Ludanyi A, et al. Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitricoxide signaling. J. Neurosci. 2007; 27:8101-8111.10.1523/JNEUROSCI.1912-07.2007667273417652601Search in Google Scholar

36. Dvorácskó S, Tömböly C, Berkecz R, Keresztes A. Investigation of receptor binding and functional characteristics of hemopressin (1-7). Neuropeptides 2016; 58:15-22. doi: 10.1016/j.npep.2016.02.001.10.1016/j.npep.2016.02.00126895730Search in Google Scholar

37. Wang P, Zheng T, Zhang M, et al. Antinociceptive effects of the endogenous cannabinoid peptide agonist VD-hemopressin(β) in mice. Brain Research Bulletin 2018; 139:48-55. https://doi.org/10.1016/j.brainresbull.2018.02.003.10.1016/j.brainresbull.2018.02.00329425797Search in Google Scholar

eISSN:
0324-1750
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Immunologie, Klinische Medizin, andere