Zitieren

1. Kamta J, Chaar M, Ande A, et al. Advancing Cancer Therapy with Present and Emerging Immuno-Oncology Approaches. Front Oncol 2017; 7: a64.10.3389/fonc.2017.00064539411628459041Search in Google Scholar

2. Gebremeskel S, Johnston B. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 2015; 6(39): 41600-19.10.18632/oncotarget.6113474717626486085Search in Google Scholar

3. Ichim CV. Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy. J Transl Med 2005; 3(1): 8.10.1186/1479-5876-3-854904915698481Search in Google Scholar

4. Matsueda S, Graham DY. Immunotherapy in gastric cancer. World J Gastroenterol 2014; 20 (7): 1657-66.10.3748/wjg.v20.i7.1657393096624587645Search in Google Scholar

5. Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J 1957; 1: 779-86.Search in Google Scholar

6. Nisen P, Weiner GJ, Bokemeyer C. Four subtypes of gastric cancer identified. Cancer Discovery 2014; 4: 1108-09.10.1158/2159-8290.CD-NB2014-125Search in Google Scholar

7. Cavallo F, De Giovanni C, Nanni P, et al. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 2011; 60: 319-26.10.1007/s00262-010-0968-0304209621267721Search in Google Scholar

8. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331: 1565-70.10.1126/science.120348621436444Search in Google Scholar

9. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253-68.10.1038/nri3175358714822437938Search in Google Scholar

10. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734-36.10.1126/science.271.5256.17348596936Search in Google Scholar

11. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.N Engl J Med 2012; 366: 2443-54.10.1056/NEJMoa1200690354453922658127Search in Google Scholar

12. Ngiow SF, Teng MW, Smyth MJ. Prospects for TIM3-Targeted Antitumor Immunotherapy. Cancer Res 2011; 71: 6567-71.10.1158/0008-5472.CAN-11-148722009533Search in Google Scholar

13. Khalil M, Vonderheide RH. Anti-CD40 agonist antibodies: pre-clinical and clinical experience.Update Cancer Ther 2007; 2: 61-65.10.1016/j.uct.2007.06.001Search in Google Scholar

14. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205: 825-39.10.1084/jem.20071341Search in Google Scholar

15. Marin-Acevedo JA, Soyano AE, Dholaria B, et al. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018; 11: 8.10.1186/s13045-017-0552-6Search in Google Scholar

16. Amedei A, Benagiano M, della Bella C, et al. Novel immuno-therapeutic strategies of gastric cancer treatment. J Biomed Biotechnol 2011; 2011: 437348.10.1155/2011/437348Search in Google Scholar

17. Yoshikawa T, Tsuburaya A, Kobayashi O et al. Plasma concentrations of VEGF and bFGF in patients with gastric carcinoma. Cancer Lett 2000; 153: 7-12.10.1016/S0304-3835(99)00426-7Search in Google Scholar

18. Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 2006; 42(18): 3127-39.10.1016/j.ejca.2006.09.01517098419Search in Google Scholar

19. Niccolai E, Taddei A, Prisco D, et al. Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol 2015; 21(19): 5778-93.10.3748/wjg.v21.i19.5778443801226019442Search in Google Scholar

20. Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350(23): 2335-42.10.1056/NEJMoa03269115175435Search in Google Scholar

21. Kim YJ, Lim J, Kang JS, et al. Adoptive immunotherapy of human gastric cancer with ex vivo expanded T cells.Arch Pharm Res 2010; 33: 1789-95.10.1007/s12272-010-1111-721116782Search in Google Scholar

22. Wu J, Fu J, Zhang M1, et al. AFM13: a first-in-class tetrava-lent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy. J Hematol Oncol 2015; 8: 96.10.1186/s13045-015-0188-3452213626231785Search in Google Scholar

23. Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Bio-mark Res 2017; 5: 22.10.1186/s40364-017-0102-y548293128652918Search in Google Scholar

24. Wang Y, Chen M, Wu Z, et al. CD133-redirected chimeric antigen receptor engineered autologous T-cell treatment in patients with advanced and metastatic malignancies. J Clin Oncol 2017; 35: 3042.10.1200/JCO.2017.35.15_suppl.3042Search in Google Scholar

25. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485-92.10.1056/NEJM1985120531323273903508Search in Google Scholar

26. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233: 1318-21.10.1126/science.34892913489291Search in Google Scholar

27. Yun YS, Hargrove ME, Ting CC. In vivo antitumor activity of anti-CD3-induced activated killer cells.Cancer Res 1989; 49: 4770-74.Search in Google Scholar

28. Rutella S, Iudicone P, Bonanno G, et al. Adoptive immuno-therapy with cytokine-induced killer cells generated with a new good manufacturing practice-grade protocol. Cytotherapy 2012; 14: 841-50.10.3109/14653249.2012.68103822563888Search in Google Scholar

29. Rosenberg S. Lymphokine-activated killer cells: a new approach to immunotherapy of cancer.Natl Cancer Inst 1985; 75: 595-603.Search in Google Scholar

30. Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone.N Engl J Med 1987; 316(15): 889-97.10.1056/NEJM1987040931615013493432Search in Google Scholar

31. Zhang GQ, Zhao H, Wu JY, et al. Prolonged overall survival in gastric cancer patients after adoptive immunotherapy. World J Gastroenterol 2015; 21(9): 2777–85.10.3748/wjg.v21.i9.2777435123125759549Search in Google Scholar

32. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960-64.10.1126/science.112913917008531Search in Google Scholar

33. Kono K, Takahashi A, Ichihara F, et al. Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin Cancer Res 2002; 8: 1767-71.Search in Google Scholar

34. Gang Y, Zhang X, He Y, et al. Efficient induction of specific cytotoxic T lymphocytes against gastric adenocarcinoma by a survivin peptide. Biochem Cell Biol 2012; 90: 701-08.10.1139/o2012-02822992138Search in Google Scholar

35. Lu PH, Negrin RS. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol 1994; 153(4): 1687-96.10.4049/jimmunol.153.4.1687Search in Google Scholar

36. Franceschetti M, Pievani A, Borleri G et al. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp Hematol 2009; 37(5): 616-28.10.1016/j.exphem.2009.01.01019375652Search in Google Scholar

37. Jiang J, Xu N, Wu C et al. Treatment of advanced gastric cancer by chemotherapy combined with autologous cytokine-induced killer cells. Anticancer Res 2006; 26(33): 2237-42.Search in Google Scholar

38. Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors.J Cancer 2011; 2: 363-68.10.7150/jca.2.363311940521716717Search in Google Scholar

39. Cranmer LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother 2004; 53: 275-306.10.1007/s00262-003-0432-514648069Search in Google Scholar

40. Guo H, Qian X. Clinical applications of adoptive natural killer cell immunotherapy for cancer: current status and future prospects. Onkologie 2010; 33: 389-395.10.1159/00031569820631487Search in Google Scholar

41. Abozeid M, Rosato A, Sommaggio R. Immunotherapeutic Strategies for Gastric Carcinoma: A Review of Preclinical and Clinical Recent Development. Biomed Res Int 2017; 5791262.10.1155/2017/5791262552509528781967Search in Google Scholar

42. Tanaka F, Fujie T, Tahara K, et al. Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 1997; 57: 4465-68.Search in Google Scholar

43. Yang J, Li ZH, Zhou JJ, et al. Preparation and antitumor effects of nanovaccines with MAGE-3 peptides in transplanted gastric cancer in mice. Chin J Cancer 2010; 29: 359-64.10.5732/cjc.009.1054120346208Search in Google Scholar

44. Wood LV, Roberson BD, Agarwal PK et al. Association of autologous AdHER2 dendritic cell vaccination with antitumor activity and number of circulating tumor cells. J Clin Oncol 2017; 35: 3089.10.1200/JCO.2017.35.15_suppl.3089Search in Google Scholar

45. Ananiev J, Gulubova MV, Manolova IM. Prognostic significance of CD83 positive tumor-infiltrating dendritic cells and expression of TGF-beta 1 in human gastric cancer. Hepatogastroenterology 2011; 58(110-111): 1834-40.Search in Google Scholar

46. Guo C, Manjili MH, Subjeck JR, et al. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2013; 119: 421-75.10.1016/B978-0-12-407190-2.00007-1372137923870514Search in Google Scholar

47. Platonova S, Cherfils-Vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma.Cancer Res 2011; 71(16): 5412-22.10.1158/0008-5472.CAN-10-417921708957Search in Google Scholar

48. Saito H, Takaya S, Osaki T, et al. Increased apoptosis and elevated Fas expression in circulating natural killer cells in gastric cancer patients. Gastric Cancer 2013; 16: 473-79.10.1007/s10120-012-0210-123179366Search in Google Scholar

49. Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol 2006; 118: 1-10.10.1016/j.clim.2005.10.01116337194Search in Google Scholar

50. Myint ZW, Goel G. Role of modern immunotherapy in gastrointestinal malignancies: a review of current clinical progress. J Hematol Oncol 2017; 10: 86.10.1186/s13045-017-0454-7Search in Google Scholar

51. Gu L, Chen M, Guo D, et al. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One 2017; 12(8): e0182692.10.1371/journal.pone.0182692Search in Google Scholar

52. Derks S, Liao X, Chiaravalli AM, et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016; 7(22): 32925-32.10.18632/oncotarget.9076Search in Google Scholar

53. Wu XT, Lui JQ, Lu XT, et al. The enhanced effect of lupeol on the destruction of gastric cancer cells by NK cells. Int Immunopharmacol 2013; 16: 332-40.10.1016/j.intimp.2013.04.017Search in Google Scholar

54. Xu F, Xu L, Wang Q, et al. Clinicopathological and prognostic value of programmed death ligand-1 (PD-L1) in renal cell carcinoma: a meta-analysis. Int J Clin Exp Med 2015; 8(9): 14595-603.Search in Google Scholar

55. Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 2016; 17(6): 717-26.10.1016/S1470-2045(16)00175-3Search in Google Scholar

56. Dai C, Geng R, Wang C, et al. Concordance of immune checkpoints within tumor immune contexture and their prognostic significance in gastric cancer. Mol Oncol 2016; 10(10): 1551-58.10.1016/j.molonc.2016.09.004542313827720576Search in Google Scholar

eISSN:
0324-1750
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Immunologie, Klinische Medizin, andere