This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ashby M, Bréchet Y. Designing hybrid materials. Acta Materialia. 2003; 51(19): 5801–5821. https://doi.org/10.1016/S1359-6454(03)00441-5AshbyMBréchetYDesigning hybrid materials. Acta Materialia. 2003; 51(19): 5801–5821. https://doi.org/10.1016/S1359-6454(03)00441-5Search in Google Scholar
Zohdi T, Wriggers P. An introduction to computational micromechanics. Berlin Heidelberg: Springer-Verlag; 2005.ZohdiTWriggersP.An introduction to computational micromechanics. Berlin Heidelberg: Springer-Verlag; 2005.Search in Google Scholar
Burczyński T, Pietrzyk M, Kuś W, Madej Ł, Mrozek A, Rauch Ł, Multiscale Modelling and Optimisation of Materials and Structures, Hoboken: Wiley, 2022.BurczyńskiTPietrzykMKuśWMadejŁMrozekARauchŁMultiscale Modelling and Optimisation of Materials and Structures, Hoboken: Wiley, 2022.Search in Google Scholar
Ptaszny J, Hatłas M. Evaluation of the FMBEM efficiency in the analysis of porous structures. Engineering Computations. 2018;35(2): 843-866. https://doi.org/10.1108/EC-12-2016-0436PtasznyJHatłasM.Evaluation of the FMBEM efficiency in the analysis of porous structures. Engineering Computations. 2018;35(2): 843-866. https://doi.org/10.1108/EC-12-2016-0436Search in Google Scholar
Ptaszny J. A fast multipole BEM with higher-order elements for 3-D composite materials. Computers & Mathematics with Applications. 2021;82: 148-160. https://doi.org/10.1016/j.camwa.2020.10.024PtasznyJ.A fast multipole BEM with higher-order elements for 3-D composite materials. Computers & Mathematics with Applications. 2021;82: 148-160. https://doi.org/10.1016/j.camwa.2020.10.024Search in Google Scholar
Sigmund O. Materials with prescribed constitutive parameters: An inverse homogenization problem, International Journal of Solids and Structures. 1994, 31(17): 2313-2329. https://doi.org/10.1016/0020-7683(94)90154-6SigmundO.Materials with prescribed constitutive parameters: An inverse homogenization problem, International Journal of Solids and Structures. 1994, 31(17): 2313-2329. https://doi.org/10.1016/0020-7683(94)90154-6Search in Google Scholar
Trofimov A, Abaimov S, Sevostianov I. Inverse homogenization problem: Evaluation of elastic and electrical (thermal) properties of composite constituents. International Journal of Engineering Science. 2018;129: 34-46. https://doi.org/10.1016/j.ijengsci.2018.04.001TrofimovAAbaimovSSevostianovI.Inverse homogenization problem: Evaluation of elastic and electrical (thermal) properties of composite constituents. International Journal of Engineering Science. 2018;129: 34-46. https://doi.org/10.1016/j.ijengsci.2018.04.001Search in Google Scholar
Hoffman FO, Hammonds JS. Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability. Risk Analysis. 1994;14(5). https://doi.org/10.1111/J.1539-6924.1994.TB00281.XHoffmanFOHammondsJS.Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability. Risk Analysis. 1994;14(5). https://doi.org/10.1111/J.1539-6924.1994.TB00281.XSearch in Google Scholar
Pelz PF, Groche P, Pfetsch ME, Schaeffner M (Eds). Mastering Uncertainty in Mechanical Engineering, Cham: Springer; 2021.PelzPFGrochePPfetschMESchaeffnerM.(Eds). Mastering Uncertainty in Mechanical Engineering, Cham: Springer; 2021.Search in Google Scholar
Araque L, Wang L, Mal A, Schaal C. Advanced fuzzy arithmetic for material characterization of composites using guided ultrasonic waves. Mechanical Systems and Signal Processing. 2022; 171, 108856. https://doi.org/10.1016/j.ymssp.2022.108856AraqueLWangLMalASchaalC.Advanced fuzzy arithmetic for material characterization of composites using guided ultrasonic waves. Mechanical Systems and Signal Processing. 2022; 171, 108856. https://doi.org/10.1016/j.ymssp.2022.108856Search in Google Scholar
Yao JT. A ten-year review of granular computing. Proceeding of 2007 IEEE International Conference on Granular Computing, Silicon Valley, USA. 2007; 734-739. https://doi.org/10.1109/GrC.2007.11YaoJT.A ten-year review of granular computing. Proceeding of 2007 IEEE International Conference on Granular Computing, Silicon Valley, USA. 2007; 734-739. https://doi.org/10.1109/GrC.2007.11Search in Google Scholar
Pedrycz W. Granular computing: analysis and design of intelligent systems. Boca Raton: CRC Press; 2018.PedryczW.Granular computing: analysis and design of intelligent systems. Boca Raton: CRC Press; 2018.Search in Google Scholar
Ramli AA, Watada J, Pedrycz W. Information Granules Problem: An Efficient Solution of Real-Time Fuzzy Regression Analysis. In: Pedrycz, W., Chen, SM. (eds) Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol 8. Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-08254-7_3RamliAAWatadaJPedryczW.Information Granules Problem: An Efficient Solution of Real-Time Fuzzy Regression Analysis. In: PedryczW.ChenSM. (eds) Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol 8. Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-08254-7_3Search in Google Scholar
Möller B, Beer M. Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Berlin-Heidelberg: Springer-Verlag; 2004.MöllerBBeerM.Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Berlin-Heidelberg: Springer-Verlag; 2004.Search in Google Scholar
Wang L., Qiu Z., Zheng Y. State-of-the-Art Nonprobabilistic Finite Element Analyses. Jan Peter Hessling (ed.), Uncertainty Quantification and Model Calibration, IntechOpen; 2017.WangL.QiuZ.ZhengY.State-of-the-Art Nonprobabilistic Finite Element Analyses. Jan Peter Hessling (ed.), Uncertainty Quantification and Model Calibration, IntechOpen; 2017.Search in Google Scholar
Moens D, Vandepitte D. A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering. 2005; 194: 1527–1555. https://doi.org/10.1016/j.cma.2004.03.019MoensDVandepitteD.A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering. 2005; 194: 1527–1555. https://doi.org/10.1016/j.cma.2004.03.019Search in Google Scholar
Chen N, Yu D, Xia B, Li J, Ma Z. Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters, International Journal of Solids and Structures. 2017; 106–107: 174-182. https://doi.org/10.1016/j.ijsolstr.2016.11.022ChenNYuDXiaBLiJMaZ.Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters, International Journal of Solids and Structures. 2017; 106–107: 174-182. https://doi.org/10.1016/j.ijsolstr.2016.11.022Search in Google Scholar
Pivovarov D, Hahn V, Steinmann P, Willner K, Leyendecker S. Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. 2019; 64: 1601–1619. https://doi.org/10.1007/s00466-019-01737-9PivovarovDHahnVSteinmannPWillnerKLeyendeckerS.Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. 2019; 64: 1601–1619. https://doi.org/10.1007/s00466-019-01737-9Search in Google Scholar
Naskar S, Mukhopadhyay T, Sriramula S. Spatially varying fuzzy multiscale uncertainty propagation in unidirectional fibre reinforced composites. Composite Structures. 2019; 209: 940-967. https://doi.org/10.1016/j.compstruct.2018.09.090NaskarSMukhopadhyayTSriramulaS.Spatially varying fuzzy multiscale uncertainty propagation in unidirectional fibre reinforced composites. Composite Structures. 2019; 209: 940-967. https://doi.org/10.1016/j.compstruct.2018.09.090Search in Google Scholar
Beluch W, Hatłas M, Ptaszny J, Granular Computational Homogenisation of Composite Structures with Imprecise Parameters, Archives of Mechanics. 2023; 75(3): 271-300. https://doi.org/10.24423/aom.4186BeluchWHatłasMPtasznyJGranular Computational Homogenisation of Composite Structures with Imprecise Parameters, Archives of Mechanics. 2023; 75(3): 271-300. https://doi.org/10.24423/aom.4186Search in Google Scholar
Yamanaka Y, Matsubara S, Hirayama N, Moriguchi S, Terada K. Surrogate modeling for the homogenization of elastoplastic composites based on RBF interpolation, Computer Methods in Applied Mechanics and Engineering. 2023; 415, 116282. https://doi.org/10.1016/j.cma.2023.116282YamanakaYMatsubaraSHirayamaNMoriguchiSTeradaK.Surrogate modeling for the homogenization of elastoplastic composites based on RBF interpolation, Computer Methods in Applied Mechanics and Engineering. 2023; 415, 116282. https://doi.org/10.1016/j.cma.2023.116282Search in Google Scholar
Fuhg JN, Böhm C, Bouklas N, Fau A, Wriggers P, Marino M, Model-data-driven constitutive responses: Application to a multiscale computational framework. International Journal of Engineering Science. 2021; 167, 103522. https://doi.org/10.1016/j.ijengsci.2021.103522FuhgJNBöhmCBouklasNFauAWriggersPMarinoMModel-data-driven constitutive responses: Application to a multiscale computational framework. International Journal of Engineering Science. 2021; 167, 103522. https://doi.org/10.1016/j.ijengsci.2021.103522Search in Google Scholar
Rodríguez-Romero R, Compán V, Sáez A, García-Macías E. Hierarchical meta-modelling for fast prediction of the elastic properties of stone injected with CNT/cement mortar. Construction and Building Materials. 2023; 408. https://doi.org/10.1016/j.conbuildmat.2023.133725Rodríguez-RomeroRCompánVSáezAGarcía-MacíasE.Hierarchical meta-modelling for fast prediction of the elastic properties of stone injected with CNT/cement mortar. Construction and Building Materials. 2023; 408. https://doi.org/10.1016/j.conbuildmat.2023.133725Search in Google Scholar
Le BA, Yvonnet J, He QC. Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering. 2015; 104: 1061–1084. https://doi.org/10.1002/nme.4953LeBAYvonnetJHeQC.Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering. 2015; 104: 1061–1084. https://doi.org/10.1002/nme.4953Search in Google Scholar
Ogierman W. A data-driven model based on the numerical solution of the equivalent inclusion problem for the analysis of nonlinear shortfibre composites. Composites Science and Technology. 2024; 250, 110516. https://doi.org/10.1016/j.compscitech.2024.110516OgiermanW.A data-driven model based on the numerical solution of the equivalent inclusion problem for the analysis of nonlinear shortfibre composites. Composites Science and Technology. 2024; 250, 110516. https://doi.org/10.1016/j.compscitech.2024.110516Search in Google Scholar
Kaucher E. Interval Analysis in the Extended Interval Space IR. In: Alefeld, G., Grigorieff, R.D. (eds), Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis). Computing Sup-plementum. 1980; 2: 33-49. https://doi.org/10.1007/978-3-7091-8577-3_3KaucherE.Interval Analysis in the Extended Interval Space IR. In: AlefeldG.GrigorieffR.D. (eds), Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis). Computing Sup-plementum. 1980; 2: 33-49. https://doi.org/10.1007/978-3-7091-8577-3_3Search in Google Scholar
Markov SM. On direct interval arithmetic and its applications, Journal of Universal Computer Science. 1995; 1(7): 514–526. https://doi.org/10.1007/978-3-642-80350-5_43MarkovSM.On direct interval arithmetic and its applications, Journal of Universal Computer Science. 1995; 1(7): 514–526. https://doi.org/10.1007/978-3-642-80350-5_43Search in Google Scholar
Popova ED. Multiplication distributivity of proper and improper intervals. Reliable Computing. 2001; 7: 129–140. https://doi.org/10.1023/A:1011470131086PopovaED.Multiplication distributivity of proper and improper intervals. Reliable Computing. 2001; 7: 129–140. https://doi.org/10.1023/A:1011470131086Search in Google Scholar
Piasecka-Belkhayat A. Interval boundary element method for imprecisely defined unsteady heat transfer problems (in Polish). Monographs, 321. Gliwice: Publishing House of Silesian University of Technology, 2011.Piasecka-BelkhayatA.Interval boundary element method for imprecisely defined unsteady heat transfer problems (in Polish). Monographs, 321. Gliwice: Publishing House of Silesian University of Technology, 2011.Search in Google Scholar
Shary SP. Non-Traditional Intervals and Their Use. Which Ones Really Make Sense? Numerical Analysis and Applications. 2023; 16(2): 179-191. https://doi.org/10.1134/S1995423923020088SharySP.Non-Traditional Intervals and Their Use. Which Ones Really Make Sense? Numerical Analysis and Applications. 2023; 16(2): 179-191. https://doi.org/10.1134/S1995423923020088Search in Google Scholar
Kouznetsova V. Computational homogenization for the multi-scale analysis of multi-phase materials. PhD. thesis, Technische Universiteit Eindhoven; 2002.KouznetsovaV.Computational homogenization for the multi-scale analysis of multi-phase materials. PhD. thesis, Technische Universiteit Eindhoven; 2002.Search in Google Scholar
Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and fundamentals. Butterworth-Heinemann; 2013.ZienkiewiczOCTaylorRLZhuJZ.The finite element method: its basis and fundamentals. Butterworth-Heinemann; 2013.Search in Google Scholar
Brebbia J, Dominguez J. Boundary Elements: An Introductory Course. New York: McGraw-Hill; 1992.BrebbiaJDominguezJ.Boundary Elements: An Introductory Course. New York: McGraw-Hill; 1992.Search in Google Scholar
Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids. 1963; 11: 357– 372. https://doi.org/10.1016/0022-5096(63)90036-XHillR.Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids. 1963; 11: 357– 372. https://doi.org/10.1016/0022-5096(63)90036-XSearch in Google Scholar
Nguyen V, Béchet E, Geuzaine C, Noels L. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Computational Materials Science. 2012;55: 390–406. https://doi.org/10.1016/j.commatsci.2011.10.017NguyenVBéchetEGeuzaineCNoelsL.Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Computational Materials Science. 2012;55: 390–406. https://doi.org/10.1016/j.commatsci.2011.10.017Search in Google Scholar
Botsis J, Deville M. Mechanics of Continuous Media: an Introduction. EPFL Press; 2018.BotsisJDevilleM.Mechanics of Continuous Media: an Introduction. EPFL Press; 2018.Search in Google Scholar
Bos L, Gibson P, Kotchetov M, Slawinski M. Classes of Anisotropic Media: A Tutorial. Studia Geophisica et Geodaetica. 2004;48: 265-287. https://doi.org/10.1023/B:SGEG.0000015596.68104.31BosLGibsonPKotchetovMSlawinskiM.Classes of Anisotropic Media: A Tutorial. Studia Geophisica et Geodaetica. 2004;48: 265-287. https://doi.org/10.1023/B:SGEG.0000015596.68104.31Search in Google Scholar
Burczyński T, Kuś W, Beluch W, Długosz A, Poteralski A, Szczepanik M. Intelligent computing in optimal design. Springer International Publishing; 2020.BurczyńskiTKuśWBeluchWDługoszAPoteralskiASzczepanikM.Intelligent computing in optimal design. Springer International Publishing; 2020.Search in Google Scholar
Michalewicz Z, Fogel DB., How to Solve It: Modern Heuristics. Berlin, Heidelberg: Springer; 2004.MichalewiczZFogelDB.How to Solve It: Modern Heuristics. Berlin, Heidelberg: Springer; 2004.Search in Google Scholar
Nelson PR, Coffin M, Copeland KAF. Response surface methods, In: Nelson PR, Coffin M, Copeland KAF (eds) Introductory Statistics for Engineering Experimentation. Academic Press, 395–423, 2003.NelsonPRCoffinMCopeland KAF. Response surface methods, In: NelsonPRCoffinMCopelandKAF (eds) Introductory Statistics for Engineering Experimentation. Academic Press, 395–423, 2003.Search in Google Scholar
Montgomery D. Design and analysis of experiments. New York: John Wiley & Sons; 2012.MontgomeryD.Design and analysis of experiments. New York: John Wiley & Sons; 2012.Search in Google Scholar
Halmos PR. Naive set theory. New York: Springer-Verlag; 1974.HalmosPR.Naive set theory. New York: Springer-Verlag; 1974.Search in Google Scholar
Jaulin L, Kieffer M, Didrit O, Water E. Applied interval analysis, London: Springer; 2001.JaulinLKiefferMDidritOWaterE.Applied interval analysis, London: Springer; 2001.Search in Google Scholar
Hayes B. A lucid interval. American Scientist, 2003;91(6): 484–488.HayesB. Alucid interval. American Scientist, 2003;91(6): 484–488.Search in Google Scholar
Burczyński T., Kuś W. Optimization of structures using distributed and parallel evolutionary algorithms, Parallel Processing and Applied Mathematics, Lecture Notes on Computational Sciences 3019, Springer, 572-579, 2004.BurczyńskiT.KuśW.Optimization of structures using distributed and parallel evolutionary algorithms, Parallel Processing and Applied Mathematics, Lecture Notes on Computational Sciences 3019, Springer, 572-579, 2004.Search in Google Scholar
Długosz A. Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 2014;14(1): 86-93. https://doi.org/10.7494/cmms.2014.1.0478DługoszA.Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 2014;14(1): 86-93. https://doi.org/10.7494/cmms.2014.1.0478Search in Google Scholar
Deb K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons; 2001.DebK.Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons; 2001.Search in Google Scholar
Długosz, A. Multiobjective Evolutionary Optimization of MEMS Structures, Computer Assisted Mechanics and Engineering Sciences, 2010;17(1): 41-50.DługoszA.Multiobjective Evolutionary Optimization of MEMS Structures, Computer Assisted Mechanics and Engineering Sciences, 2010;17(1): 41-50.Search in Google Scholar
Zitzler, E., Brockhoff, D., Thiele, L. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2007; 4403: 862—876. https://doi.org/10.1007/978-3-540-70928-2_64ZitzlerE.BrockhoffD.ThieleL.The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: ObayashiS.DebK.PoloniC.HiroyasuT.MurataT. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2007; 4403: 862—876. https://doi.org/10.1007/978-3-540-70928-2_64Search in Google Scholar
Rothwell, A. Optimization Methods in Structural Design. Springer International Publishing; 2017.RothwellA.Optimization Methods in Structural Design. Springer International Publishing; 2017.Search in Google Scholar