This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Tsai DM, Lai SC. Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process. 2009;18(1):158–67. Available from: https://doi.org/10.1109/tip.2008.2007558TsaiDMLaiSCIndependent component analysis-based background subtraction for indoor surveillanceIEEE Trans Image Process200918115867Available from: https://doi.org/10.1109/tip.2008.2007558Search in Google Scholar
Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. Proc IEEE Comput Vis Pattern Recognit. 2003;246–52. Available from: https://doi.org/10.1109/cvpr.1999.784637StaufferCGrimsonWELAdaptive background mixture models for real-time trackingProc IEEE Comput Vis Pattern Recognit.200324652Available from: https://doi.org/10.1109/cvpr.1999.784637Search in Google Scholar
Xing-ju W, Yu-wei H, Ran-hang O. Method, model and application for the conversion from vague sets to fuzzy sets. Proc Int Conf Artif Intell Comput Intell AICI. 2009;510–3. Available from: https://doi.org/10.1109/aici.2009.397Xing-juWYu-weiHRan-hangOMethod, model and application for the conversion from vague sets to fuzzy setsProc Int Conf Artif Intell Comput Intell AICI.20095103Available from: https://doi.org/10.1109/aici.2009.397Search in Google Scholar
Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–59. Available from: https://doi.org/10.1023/A:1008202821328StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19971134159Available from: https://doi.org/10.1023/A:1008202821328Search in Google Scholar
Das S, Ponnuthurai S. Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput. 2011;15(1):4–31. Available from: https://doi.org/10.1109/tevc.2010.2059031DasSPonnuthuraiSDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput2011151431Available from: https://doi.org/10.1109/tevc.2010.2059031Search in Google Scholar
Sarkar S, Paul S, Burman R, Das S, Chaudhuri S. A fuzzy entropy-based multi-level image thresholding using differential evolution. Int Conf Swarm Evol Memet Comput. 2014;386–95. Available from: https://doi.org/10.1007/978-3-319-20294-5_34SarkarSPaulSBurmanRDasSChaudhuriSA fuzzy entropy-based multi-level image thresholding using differential evolutionInt Conf Swarm Evol Memet Comput.201438695Available from: https://doi.org/10.1007/978-3-319-20294-5_34Search in Google Scholar
Nihal P, Ashish S, Abhishek M, Partha P, Debi D. Moving object detection using modified temporal differencing and local fuzzy thresholding. J Supercomput. 2017;73:1120–39. Available from: https://doi.org/10.1007/s11227-016-1815-7NihalPAshishSAbhishekMParthaPDebiDMoving object detection using modified temporal differencing and local fuzzy thresholdingJ Supercomput201773112039Available from: https://doi.org/10.1007/s11227-016-1815-7Search in Google Scholar
Charansiriphaisan K, Sirapat C, Khamron S. A global multilevel thresholding using differential evolution approach. Math Probl Eng. 2014;1–23. Available from: https://doi.org/10.1155/2014/974024CharansiriphaisanKSirapatCKhamronSA global multilevel thresholding using differential evolution approachMath Probl Eng.2014123Available from: https://doi.org/10.1155/2014/974024Search in Google Scholar
Yuanyuan J, Dong Z, Wenchang Z, Li W. Multi-level thresholding image segmentation based on improved slime mould algorithm and symmetric cross-entropy. Entropy. 2023;25(1):178. Available from: https://doi.org/10.3390/e25010178YuanyuanJDongZWenchangZLiWMulti-level thresholding image segmentation based on improved slime mould algorithm and symmetric cross-entropyEntropy2023251178Available from: https://doi.org/10.3390/e25010178Search in Google Scholar
Jinzhong Z, Tan Z, Duansong W. A complex-valued encoding golden jackal optimization for multilevel thresholding image segmentation. Appl Soft Comput. 2024;165:112108. Available from: https://doi.org/10.1016/j.asoc.2024.112108JinzhongZTanZDuansongWA complex-valued encoding golden jackal optimization for multilevel thresholding image segmentationAppl Soft Comput.2024165112108Available from: https://doi.org/10.1016/j.asoc.2024.112108Search in Google Scholar
Giveki D. Robust moving object detection based on fusing Atanassov’s intuitionistic 3D fuzzy histon roughness index and texture features. Int J Approx Reason. 2021;135:1–20. Available from: https://doi.org/10.1016/j.ijar.2021.04.007GivekiDRobust moving object detection based on fusing Atanassov’s intuitionistic 3D fuzzy histon roughness index and texture featuresInt J Approx Reason2021135120Available from: https://doi.org/10.1016/j.ijar.2021.04.007Search in Google Scholar
Giveki D, Montazer A, Soltanshahi A. Atanassov’s intuitionistic fuzzy histon for robust moving object detection. Int J Approx Reason. 2017;91:80–95. Available from: https://doi.org/10.1016/j.ijar.2017.08.014GivekiDMontazerASoltanshahiAAtanassov’s intuitionistic fuzzy histon for robust moving object detectionInt J Approx Reason2017918095Available from: https://doi.org/10.1016/j.ijar.2017.08.014Search in Google Scholar
Giveki D, Soltanshahi A, Yousefvand M. Proposing a new feature descriptor for moving object detection. Optik. 2020;209:164563. Available from: https://doi.org/10.1016/j.ijleo.2020.164563GivekiDSoltanshahiAYousefvandMProposing a new feature descriptor for moving object detectionOptik.2020209164563Available from: https://doi.org/10.1016/j.ijleo.2020.164563Search in Google Scholar
Hathiram N, Ravi J. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput. 2018;62:1019–43. Available from: https://doi.org/10.1016/j.asoc.2017.09.039HathiramNRaviJHybridizing sine cosine algorithm with differential evolution for global optimization and object trackingAppl Soft Comput201862101943Available from: https://doi.org/10.1016/j.asoc.2017.09.039Search in Google Scholar
Yi W, Zhiming L, Pierre-Marc J. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput. 2018;62:1019–43. Available from: https://doi.org/10.1016/j.asoc.2017.09.039YiWZhimingLPierre-MarcJHybridizing sine cosine algorithm with differential evolution for global optimization and object trackingAppl Soft Comput201862101943Available from: https://doi.org/10.1016/j.asoc.2017.09.039Search in Google Scholar
Cao W, Yuan J, He Z. Fast deep neural networks with knowledge guided training and predicted regions of interests for real-time video object detection. IEEE Access. 2018;6:8990–9. Available from: https://doi.org/10.1109/access.2018.2795798CaoWYuanJHeZFast deep neural networks with knowledge guided training and predicted regions of interests for real-time video object detectionIEEE Access2018689909Available from: https://doi.org/10.1109/access.2018.2795798Search in Google Scholar
García-Aguilar I, Jorge G, Rafael M, Ezequiel L. Automated labeling of training data for improved object detection in traffic videos by fine-tuned deep convolutional neural networks. Pattern Recognit Lett. 2023;167:45–52. Available from: https://doi.org/10.1016/j.patrec.2023.01.015García-AguilarIJorgeGRafaelMEzequielLAutomated labeling of training data for improved object detection in traffic videos by fine-tuned deep convolutional neural networksPattern Recognit Lett20231674552Available from: https://doi.org/10.1016/j.patrec.2023.01.015Search in Google Scholar
Talukdar J, Gupta S, Rajpura P, Hegde R. Transfer learning for object detection using state-of-the-art deep neural networks. Int Conf Signal Process Integr Netw SPIN. 2018. Available from: https://doi.org/10.1109/spin.2018.8474198TalukdarJGuptaSRajpuraPHegdeRTransfer learning for object detection using state-of-the-art deep neural networksInt Conf Signal Process Integr Netw SPIN.2018Available from: https://doi.org/10.1109/spin.2018.8474198Search in Google Scholar
Boufares O, Aloui N, Cherif A. Adaptive threshold for background subtraction in moving object detection using stationary wavelet transforms 2D. Int J Adv Comput Sci Appl. 2016;7(8). Available from: https://doi.org/10.14569/ijacsa.2016.070805BoufaresOAlouiNCherifAAdaptive threshold for background subtraction in moving object detection using stationary wavelet transforms 2DInt J Adv Comput Sci Appl.201678Available from: https://doi.org/10.14569/ijacsa.2016.070805Search in Google Scholar
Lu G, Kudo M, Toyama J. Temporal segmentation and assignment of successive actions in a long-term video. Pattern Recognit Lett. 2013;34(15):1936–44. Available from: https://doi.org/10.1016/j.patrec.2012.10.023LuGKudoMToyamaJTemporal segmentation and assignment of successive actions in a long-term videoPattern Recognit Lett20133415193644Available from: https://doi.org/10.1016/j.patrec.2012.10.023Search in Google Scholar
Yong X, Jixiang D, Bob Z, Daoyun X. Background modeling methods in video analysis: A review and comparative evaluation. CAAI Trans Intell Technol. 2016;1(1):43–60. Available from: https://doi.org/10.1016/j.trit.2016.03.005YongXJixiangDBobZDaoyunXBackground modeling methods in video analysis: A review and comparative evaluationCAAI Trans Intell Technol2016114360Available from: https://doi.org/10.1016/j.trit.2016.03.005Search in Google Scholar
Carolina R, Roberto L. Unsupervised learning from videos using temporal coherency deep networks. Comput Vis Image Underst. 2019;179:79–89. Available from: https://doi.org/10.1016/j.cviu.2018.08.003CarolinaRRobertoLUnsupervised learning from videos using temporal coherency deep networksComput Vis Image Underst20191797989Available from: https://doi.org/10.1016/j.cviu.2018.08.003Search in Google Scholar
Oliver N, Rosario B, Pentland A. A Bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):831–43. Available from: https://doi.org/10.1109/34.868684OliverNRosarioBPentlandAA Bayesian computer vision system for modeling human interactionsIEEE Trans Pattern Anal Mach Intell200022883143Available from: https://doi.org/10.1109/34.868684Search in Google Scholar
Pierre-Luc S, Guillaume B, Robert B. SUBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Trans Image Process. 2015;24(1):359–73. Available from: https://doi.org/10.1109/tip.2014.2378053Pierre-LucSGuillaumeBRobertBSUBSENSE: A universal change detection method with local adaptive sensitivityIEEE Trans Image Process201524135973Available from: https://doi.org/10.1109/tip.2014.2378053Search in Google Scholar
Maddalena L, Petrosino A. The SOBS algorithm: What are the limits? Proc IEEE Workshop Change Detect CVPR. 2012. Available from: https://doi.org/10.1109/cvprw.2012.6238922MaddalenaLPetrosinoAThe SOBS algorithm: What are the limits?Proc IEEE Workshop Change Detect CVPR2012Available from: https://doi.org/10.1109/cvprw.2012.6238922Search in Google Scholar
Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. Proc 17th Int Conf Pattern Recognit ICPR. 2004. Available from: https://doi.org/10.1109/icpr.2004.1333992ZivkovicZImproved adaptive Gaussian mixture model for background subtractionProc 17th Int Conf Pattern Recognit ICPR2004Available from: https://doi.org/10.1109/icpr.2004.1333992Search in Google Scholar
Bouwmans T, Javed S, Sultana M, Jung S. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. arXiv. 2018. Available from: https://arxiv.org/pdf/1811.05255BouwmansTJavedSSultanaMJungSDeep neural network concepts for background subtraction: A systematic review and comparative evaluationarXiv.2018Available from: https://arxiv.org/pdf/1811.05255Search in Google Scholar
Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P. CDnet 2014: An expanded change detection benchmark dataset. Proc IEEE Conf Comput Vis Pattern Recognit Workshops. 2014;387–94. Available from: https://www.opencv.orgWangYJodoinPMPorikliFKonradJBenezethYIshwarPCDnet 2014: An expanded change detection benchmark datasetProc IEEE Conf Comput Vis Pattern Recognit Workshops201438794Available from: https://www.opencv.orgSearch in Google Scholar
Maddalena L, Petrosino A. Towards benchmarking scene background initialization. Proc ICIAP Workshops. 2015;469–76. Available from: http://sbmi2015.na.icar.cnr.it/MaddalenaLPetrosinoATowards benchmarking scene background initializationProc ICIAP Workshops201546976Available from: http://sbmi2015.na.icar.cnr.it/Search in Google Scholar
Cuevas C, Yez EM, García N. Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput Vis Image Underst. 2016;152:103–17. Available from: https://doi.org/10.1016/j.cviu.2016.01.012CuevasCYezEMGarcíaNLabeled dataset for integral evaluation of moving object detection algorithms: LASIESTAComput Vis Image Underst201615210317Available from: https://doi.org/10.1016/j.cviu.2016.01.012Search in Google Scholar
Stauffer C, Grimson WEL. Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):747–57. Available from: https://doi.org/10.1109/34.868684StaufferCGrimsonWELLearning patterns of activity using real-time trackingIEEE Trans Pattern Anal Mach Intell200022874757Available from: https://doi.org/10.1109/34.868684Search in Google Scholar
Berjón D, Cuevas C, Morán F, García N. Real-time non-parametric background subtraction with tracking-based foreground update. Pattern Recognit. 2018;74:156–70. Available from: https://doi.org/10.1016/j.patcog.2017.09.009BerjónDCuevasCMoránFGarcíaNReal-time non-parametric background subtraction with tracking-based foreground updatePattern Recognit20187415670Available from: https://doi.org/10.1016/j.patcog.2017.09.009Search in Google Scholar
Vacavant A, Chateau T, Wilhelm A, Lequievre L. A benchmark dataset for outdoor foreground/background extraction. Proc Asian Conf Comput Vis ACCV. 2012.VacavantAChateauTWilhelmALequievreLA benchmark dataset for outdoor foreground/background extractionProc Asian Conf Comput Vis ACCV.2012Search in Google Scholar