Uneingeschränkter Zugang

Moving Object Detection: A New Method Combining Background Subtraction, Fuzzy Entropy Thresholding and Differential Evolution Optimization

, ,  und   
31. März 2025

Zitieren
COVER HERUNTERLADEN

Tsai DM, Lai SC. Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process. 2009;18(1):158–67. Available from: https://doi.org/10.1109/tip.2008.2007558 TsaiDM LaiSC Independent component analysis-based background subtraction for indoor surveillance IEEE Trans Image Process 2009 18 1 158 67 Available from: https://doi.org/10.1109/tip.2008.2007558 Search in Google Scholar

Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. Proc IEEE Comput Vis Pattern Recognit. 2003;246–52. Available from: https://doi.org/10.1109/cvpr.1999.784637 StaufferC GrimsonWEL Adaptive background mixture models for real-time tracking Proc IEEE Comput Vis Pattern Recognit. 2003 246 52 Available from: https://doi.org/10.1109/cvpr.1999.784637 Search in Google Scholar

Xing-ju W, Yu-wei H, Ran-hang O. Method, model and application for the conversion from vague sets to fuzzy sets. Proc Int Conf Artif Intell Comput Intell AICI. 2009;510–3. Available from: https://doi.org/10.1109/aici.2009.397 Xing-juW Yu-weiH Ran-hangO Method, model and application for the conversion from vague sets to fuzzy sets Proc Int Conf Artif Intell Comput Intell AICI. 2009 510 3 Available from: https://doi.org/10.1109/aici.2009.397 Search in Google Scholar

Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–59. Available from: https://doi.org/10.1023/A:1008202821328 StornR PriceK Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces J Glob Optim 1997 11 341 59 Available from: https://doi.org/10.1023/A:1008202821328 Search in Google Scholar

Das S, Ponnuthurai S. Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput. 2011;15(1):4–31. Available from: https://doi.org/10.1109/tevc.2010.2059031 DasS PonnuthuraiS Differential evolution: a survey of the state-of-the-art IEEE Trans Evol Comput 2011 15 1 4 31 Available from: https://doi.org/10.1109/tevc.2010.2059031 Search in Google Scholar

Sarkar S, Paul S, Burman R, Das S, Chaudhuri S. A fuzzy entropy-based multi-level image thresholding using differential evolution. Int Conf Swarm Evol Memet Comput. 2014;386–95. Available from: https://doi.org/10.1007/978-3-319-20294-5_34 SarkarS PaulS BurmanR DasS ChaudhuriS A fuzzy entropy-based multi-level image thresholding using differential evolution Int Conf Swarm Evol Memet Comput. 2014 386 95 Available from: https://doi.org/10.1007/978-3-319-20294-5_34 Search in Google Scholar

Nihal P, Ashish S, Abhishek M, Partha P, Debi D. Moving object detection using modified temporal differencing and local fuzzy thresholding. J Supercomput. 2017;73:1120–39. Available from: https://doi.org/10.1007/s11227-016-1815-7 NihalP AshishS AbhishekM ParthaP DebiD Moving object detection using modified temporal differencing and local fuzzy thresholding J Supercomput 2017 73 1120 39 Available from: https://doi.org/10.1007/s11227-016-1815-7 Search in Google Scholar

Charansiriphaisan K, Sirapat C, Khamron S. A global multilevel thresholding using differential evolution approach. Math Probl Eng. 2014;1–23. Available from: https://doi.org/10.1155/2014/974024 CharansiriphaisanK SirapatC KhamronS A global multilevel thresholding using differential evolution approach Math Probl Eng. 2014 1 23 Available from: https://doi.org/10.1155/2014/974024 Search in Google Scholar

Yuanyuan J, Dong Z, Wenchang Z, Li W. Multi-level thresholding image segmentation based on improved slime mould algorithm and symmetric cross-entropy. Entropy. 2023;25(1):178. Available from: https://doi.org/10.3390/e25010178 YuanyuanJ DongZ WenchangZ LiW Multi-level thresholding image segmentation based on improved slime mould algorithm and symmetric cross-entropy Entropy 2023 25 1 178Available from: https://doi.org/10.3390/e25010178 Search in Google Scholar

Jinzhong Z, Tan Z, Duansong W. A complex-valued encoding golden jackal optimization for multilevel thresholding image segmentation. Appl Soft Comput. 2024;165:112108. Available from: https://doi.org/10.1016/j.asoc.2024.112108 JinzhongZ TanZ DuansongW A complex-valued encoding golden jackal optimization for multilevel thresholding image segmentation Appl Soft Comput. 2024 165 112108 Available from: https://doi.org/10.1016/j.asoc.2024.112108 Search in Google Scholar

Giveki D. Robust moving object detection based on fusing Atanassov’s intuitionistic 3D fuzzy histon roughness index and texture features. Int J Approx Reason. 2021;135:1–20. Available from: https://doi.org/10.1016/j.ijar.2021.04.007 GivekiD Robust moving object detection based on fusing Atanassov’s intuitionistic 3D fuzzy histon roughness index and texture features Int J Approx Reason 2021 135 1 20 Available from: https://doi.org/10.1016/j.ijar.2021.04.007 Search in Google Scholar

Giveki D, Montazer A, Soltanshahi A. Atanassov’s intuitionistic fuzzy histon for robust moving object detection. Int J Approx Reason. 2017;91:80–95. Available from: https://doi.org/10.1016/j.ijar.2017.08.014 GivekiD MontazerA SoltanshahiA Atanassov’s intuitionistic fuzzy histon for robust moving object detection Int J Approx Reason 2017 91 80 95 Available from: https://doi.org/10.1016/j.ijar.2017.08.014 Search in Google Scholar

Giveki D, Soltanshahi A, Yousefvand M. Proposing a new feature descriptor for moving object detection. Optik. 2020;209:164563. Available from: https://doi.org/10.1016/j.ijleo.2020.164563 GivekiD SoltanshahiA YousefvandM Proposing a new feature descriptor for moving object detection Optik. 2020 209 164563 Available from: https://doi.org/10.1016/j.ijleo.2020.164563 Search in Google Scholar

Hathiram N, Ravi J. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput. 2018;62:1019–43. Available from: https://doi.org/10.1016/j.asoc.2017.09.039 HathiramN RaviJ Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl Soft Comput 2018 62 1019 43 Available from: https://doi.org/10.1016/j.asoc.2017.09.039 Search in Google Scholar

Yi W, Zhiming L, Pierre-Marc J. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput. 2018;62:1019–43. Available from: https://doi.org/10.1016/j.asoc.2017.09.039 YiW ZhimingL Pierre-MarcJ Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl Soft Comput 2018 62 1019 43 Available from: https://doi.org/10.1016/j.asoc.2017.09.039 Search in Google Scholar

Cao W, Yuan J, He Z. Fast deep neural networks with knowledge guided training and predicted regions of interests for real-time video object detection. IEEE Access. 2018;6:8990–9. Available from: https://doi.org/10.1109/access.2018.2795798 CaoW YuanJ HeZ Fast deep neural networks with knowledge guided training and predicted regions of interests for real-time video object detection IEEE Access 2018 6 8990 9 Available from: https://doi.org/10.1109/access.2018.2795798 Search in Google Scholar

García-Aguilar I, Jorge G, Rafael M, Ezequiel L. Automated labeling of training data for improved object detection in traffic videos by fine-tuned deep convolutional neural networks. Pattern Recognit Lett. 2023;167:45–52. Available from: https://doi.org/10.1016/j.patrec.2023.01.015 García-AguilarI JorgeG RafaelM EzequielL Automated labeling of training data for improved object detection in traffic videos by fine-tuned deep convolutional neural networks Pattern Recognit Lett 2023 167 45 52 Available from: https://doi.org/10.1016/j.patrec.2023.01.015 Search in Google Scholar

Talukdar J, Gupta S, Rajpura P, Hegde R. Transfer learning for object detection using state-of-the-art deep neural networks. Int Conf Signal Process Integr Netw SPIN. 2018. Available from: https://doi.org/10.1109/spin.2018.8474198 TalukdarJ GuptaS RajpuraP HegdeR Transfer learning for object detection using state-of-the-art deep neural networks Int Conf Signal Process Integr Netw SPIN. 2018 Available from: https://doi.org/10.1109/spin.2018.8474198 Search in Google Scholar

Boufares O, Aloui N, Cherif A. Adaptive threshold for background subtraction in moving object detection using stationary wavelet transforms 2D. Int J Adv Comput Sci Appl. 2016;7(8). Available from: https://doi.org/10.14569/ijacsa.2016.070805 BoufaresO AlouiN CherifA Adaptive threshold for background subtraction in moving object detection using stationary wavelet transforms 2D Int J Adv Comput Sci Appl. 2016 7 8 Available from: https://doi.org/10.14569/ijacsa.2016.070805 Search in Google Scholar

Lu G, Kudo M, Toyama J. Temporal segmentation and assignment of successive actions in a long-term video. Pattern Recognit Lett. 2013;34(15):1936–44. Available from: https://doi.org/10.1016/j.patrec.2012.10.023 LuG KudoM ToyamaJ Temporal segmentation and assignment of successive actions in a long-term video Pattern Recognit Lett 2013 34 15 1936 44 Available from: https://doi.org/10.1016/j.patrec.2012.10.023 Search in Google Scholar

Yong X, Jixiang D, Bob Z, Daoyun X. Background modeling methods in video analysis: A review and comparative evaluation. CAAI Trans Intell Technol. 2016;1(1):43–60. Available from: https://doi.org/10.1016/j.trit.2016.03.005 YongX JixiangD BobZ DaoyunX Background modeling methods in video analysis: A review and comparative evaluation CAAI Trans Intell Technol 2016 1 1 43 60 Available from: https://doi.org/10.1016/j.trit.2016.03.005 Search in Google Scholar

Carolina R, Roberto L. Unsupervised learning from videos using temporal coherency deep networks. Comput Vis Image Underst. 2019;179:79–89. Available from: https://doi.org/10.1016/j.cviu.2018.08.003 CarolinaR RobertoL Unsupervised learning from videos using temporal coherency deep networks Comput Vis Image Underst 2019 179 79 89 Available from: https://doi.org/10.1016/j.cviu.2018.08.003 Search in Google Scholar

Oliver N, Rosario B, Pentland A. A Bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):831–43. Available from: https://doi.org/10.1109/34.868684 OliverN RosarioB PentlandA A Bayesian computer vision system for modeling human interactions IEEE Trans Pattern Anal Mach Intell 2000 22 8 831 43 Available from: https://doi.org/10.1109/34.868684 Search in Google Scholar

Pierre-Luc S, Guillaume B, Robert B. SUBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Trans Image Process. 2015;24(1):359–73. Available from: https://doi.org/10.1109/tip.2014.2378053 Pierre-LucS GuillaumeB RobertB SUBSENSE: A universal change detection method with local adaptive sensitivity IEEE Trans Image Process 2015 24 1 359 73 Available from: https://doi.org/10.1109/tip.2014.2378053 Search in Google Scholar

Maddalena L, Petrosino A. The SOBS algorithm: What are the limits? Proc IEEE Workshop Change Detect CVPR. 2012. Available from: https://doi.org/10.1109/cvprw.2012.6238922 MaddalenaL PetrosinoA The SOBS algorithm: What are the limits? Proc IEEE Workshop Change Detect CVPR 2012 Available from: https://doi.org/10.1109/cvprw.2012.6238922 Search in Google Scholar

Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. Proc 17th Int Conf Pattern Recognit ICPR. 2004. Available from: https://doi.org/10.1109/icpr.2004.1333992 ZivkovicZ Improved adaptive Gaussian mixture model for background subtraction Proc 17th Int Conf Pattern Recognit ICPR 2004 Available from: https://doi.org/10.1109/icpr.2004.1333992 Search in Google Scholar

Bouwmans T, Javed S, Sultana M, Jung S. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. arXiv. 2018. Available from: https://arxiv.org/pdf/1811.05255 BouwmansT JavedS SultanaM JungS Deep neural network concepts for background subtraction: A systematic review and comparative evaluation arXiv. 2018 Available from: https://arxiv.org/pdf/1811.05255 Search in Google Scholar

Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P. CDnet 2014: An expanded change detection benchmark dataset. Proc IEEE Conf Comput Vis Pattern Recognit Workshops. 2014;387–94. Available from: https://www.opencv.org WangY JodoinPM PorikliF KonradJ BenezethY IshwarP CDnet 2014: An expanded change detection benchmark dataset Proc IEEE Conf Comput Vis Pattern Recognit Workshops 2014 387 94 Available from: https://www.opencv.org Search in Google Scholar

Maddalena L, Petrosino A. Towards benchmarking scene background initialization. Proc ICIAP Workshops. 2015;469–76. Available from: http://sbmi2015.na.icar.cnr.it/ MaddalenaL PetrosinoA Towards benchmarking scene background initialization Proc ICIAP Workshops 2015 469 76 Available from: http://sbmi2015.na.icar.cnr.it/ Search in Google Scholar

Cuevas C, Yez EM, García N. Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput Vis Image Underst. 2016;152:103–17. Available from: https://doi.org/10.1016/j.cviu.2016.01.012 CuevasC YezEM GarcíaN Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA Comput Vis Image Underst 2016 152 103 17 Available from: https://doi.org/10.1016/j.cviu.2016.01.012 Search in Google Scholar

Stauffer C, Grimson WEL. Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):747–57. Available from: https://doi.org/10.1109/34.868684 StaufferC GrimsonWEL Learning patterns of activity using real-time tracking IEEE Trans Pattern Anal Mach Intell 2000 22 8 747 57 Available from: https://doi.org/10.1109/34.868684 Search in Google Scholar

Berjón D, Cuevas C, Morán F, García N. Real-time non-parametric background subtraction with tracking-based foreground update. Pattern Recognit. 2018;74:156–70. Available from: https://doi.org/10.1016/j.patcog.2017.09.009 BerjónD CuevasC MoránF GarcíaN Real-time non-parametric background subtraction with tracking-based foreground update Pattern Recognit 2018 74 156 70 Available from: https://doi.org/10.1016/j.patcog.2017.09.009 Search in Google Scholar

Vacavant A, Chateau T, Wilhelm A, Lequievre L. A benchmark dataset for outdoor foreground/background extraction. Proc Asian Conf Comput Vis ACCV. 2012. VacavantA ChateauT WilhelmA LequievreL A benchmark dataset for outdoor foreground/background extraction Proc Asian Conf Comput Vis ACCV. 2012 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik