This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Bałon P, Świątoniowski A, Rejman E, Kiełbasa B, Smusz R, Szostak J, Cieślik J. Zastosowanie cienkościennych konstrukcji integralnych w lotnictwie na przykładzie projektu SAT-AM. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika. 2020;92(300): 5–17. https://doi.org/10.7862/rm.2020.01BałonPŚwiątoniowskiARejmanEKiełbasaBSmuszRSzostakJCieślikJZastosowanie cienkościennych konstrukcji integralnych w lotnictwie na przykładzie projektu SAT-AMZeszyty Naukowe Politechniki Rzeszowskiej. Mechanika202092300517https://doi.org/10.7862/rm.2020.01Search in Google Scholar
Wen-Hsien T, Yao-Chung Ch, Sin-Jin L, Hui-Chiao Ch, Po-Yuan Ch. A green approach to the weight reduction of aircraft cabins. Journal of Air Transport Management. 2014;40: 65–77. https://doi.org/10.1016/j.jairtraman.2014.06.004Wen-HsienTYao-ChungChSin-JinLHui-ChiaoChPo-YuanChA green approach to the weight reduction of aircraft cabinsJournal of Air Transport Management2014406577https://doi.org/10.1016/j.jairtraman.2014.06.004Search in Google Scholar
da Silva A, Jorge M, Ogashawara O. Weight reduction of amorphous alloy core electrical transformers for aircraft applications. In 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC); 1–4: IEEE. https://doi.org/10.1109/ESARS-ITEC.2016.7841347da SilvaAJorgeMOgashawaraOWeight reduction of amorphous alloy core electrical transformers for aircraft applicationsIn2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC)14IEEE. https://doi.org/10.1109/ESARS-ITEC.2016.7841347Search in Google Scholar
Zeng Y, Li J, Lin S, He X, Li B, Deng T. Comparison of Manual Setting Weight Reduction and Topology Optimization of the Wing Tips of Electric Vertical Take-Off and Landing Aircraft. Applied Sciences. 2022;12(11): 5548. https://doi.org/10.3390/app12115548ZengYLiJLinSHeXLiBDengTComparison of Manual Setting Weight Reduction and Topology Optimization of the Wing Tips of Electric Vertical Take-Off and Landing AircraftApplied Sciences202212115548https://doi.org/10.3390/app12115548Search in Google Scholar
Yang S, Ordonez J. C. Aircraft Weight Reduction and Onboard Combined Power Cycle Efficiency Improvement-An Integrative Approach. In AIAA Aviation 2019 Forum 3470: Published Online 14 Jun 2019. https://doi.org/10.2514/6.2019-3470YangSOrdonezJ. C.Aircraft Weight Reduction and Onboard Combined Power Cycle Efficiency Improvement-An Integrative ApproachIn AIAA Aviation 2019 Forum 3470: Published Online 14 Jun 2019. https://doi.org/10.2514/6.2019-3470Search in Google Scholar
Uliasz M, Ornat A, Burghardt A, Muszyńska M, Szybicki D, Kurc K. Automatic Evaluation of the Robotic Production Process for an Air-craft Jet Engine Casing. Applied Sciences. 2022;12(13):6443. https://doi.org/10.3390/app12136443UliaszMOrnatABurghardtAMuszyńskaMSzybickiDKurcKAutomatic Evaluation of the Robotic Production Process for an Air-craft Jet Engine CasingApplied Sciences202212136443https://doi.org/10.3390/app12136443Search in Google Scholar
Ornat A, Uliasz M, Bomba G, Burghardt A, Kurc K, Szybicki D. Robotised Geometric Inspection of Thin-Walled Aerospace Casings. Sensors. 2022;22(9): 3457. https://doi.org/10.3390/s22093457OrnatAUliaszMBombaGBurghardtAKurcKSzybickiDRobotised Geometric Inspection of Thin-Walled Aerospace CasingsSensors20222293457https://doi.org/10.3390/s22093457Search in Google Scholar
Kurc K, Burghardt A, Gierlak P, Muszyńska M, Szybicki D, Ornat A, Uliasz M. Application of a 3D Scanner in Robotic Measurement of Aviation Components. Electronics. 2022;11(19): 3216. https://doi.org/10.3390/electronics11193216KurcKBurghardtAGierlakPMuszyńskaMSzybickiDOrnatAUliaszMApplication of a 3D Scanner in Robotic Measurement of Aviation ComponentsElectronics202211193216https://doi.org/10.3390/electronics11193216Search in Google Scholar
Glukhov G.E, Chernikov P.E, Karapetyan A.G, Konkov A.Y, Sharypov A.N. Automated management system of technological and production processes of the civil aviation air enterprise known as' the custom module'the operator. In Proceedings of the 34th International Business Information Management Association Conference-Vision 2020: Sustainable Economic Development and Application of Innovation Management from Regional expansion to Global Growth: 7297–7309.GlukhovG.EChernikovP.EKarapetyanA.GKonkovA.YSharypovA.NAutomated management system of technological and production processes of the civil aviation air enterprise known as' the custom module'the operatorInProceedings of the 34th International Business Information Management Association Conference-Vision 2020: Sustainable Economic Development and Application of Innovation Management from Regional expansion to Global Growth72977309Search in Google Scholar
Szybicki D, Burghardt A, Kurc K, Gierlak P. Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors. 2020;20(24): 7053. https://doi.org/10.3390/s20247053SzybickiDBurghardtAKurcKGierlakPDevice for Contact Measurement of Turbine Blade Geometry in Robotic Grinding ProcessSensors202020247053https://doi.org/10.3390/s20247053Search in Google Scholar
Burghardt A, Kurc K, Szybicki D, Muszyńska M, Nawrocki J. Robot-operated quality control station based on the UTT method. Open Engineering. 2017;7(1): 37–42. https://doi.org/10.1515/eng-2017-0008BurghardtAKurcKSzybickiDMuszyńskaMNawrockiJRobot-operated quality control station based on the UTT methodOpen Engineering2017713742https://doi.org/10.1515/eng-2017-0008Search in Google Scholar
Burghardt A, Szybicki D, Gierlak P, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Tehnički vjesnik. 2022;29(1): 15–22. https://doi.org/10.17559/TV-20190710141137BurghardtASzybickiDGierlakPKurcKMuszyńskaMRobotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact ForceTehnički vjesnik20222911522https://doi.org/10.17559/TV-20190710141137Search in Google Scholar
Sha J, Wang J, Hu H, Ye Y, Xu G. Development of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 Models. Applied Sciences. 2023;13(9): 5290. https://doi.org/10.3390/app13095290ShaJWangJHuHYeYXuGDevelopment of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 ModelsApplied Sciences20231395290https://doi.org/10.3390/app13095290Search in Google Scholar
Bernabei M, Eugeni M, Gaudenzi P, Costantino F. Assessment of Smart Transformation in the Manufacturing Process of Aerospace Components Through a Data-Driven Approach. Glob J Flex Syst Manag. 2023;24: 67–86. https://doi.org/10.1007/s40171-022-00328-7BernabeiMEugeniMGaudenziPCostantinoFAssessment of Smart Transformation in the Manufacturing Process of Aerospace Components Through a Data-Driven ApproachGlob J Flex Syst Manag2023246786https://doi.org/10.1007/s40171-022-00328-7Search in Google Scholar
Vasic M, Billard A. Safety issues in human-robot interactions. In 2013 IEEE International Conference on Robotics and Automation: 197–204. https://doi.org/10.1109/ICRA.2013.6630576VasicMBillardASafety issues in human-robot interactionsIn 2013 IEEE International Conference on Robotics and Automation: 197–204. https://doi.org/10.1109/ICRA.2013.6630576Search in Google Scholar
Chinniah Y. (2016). Robot safety: overview of risk assessment and reduction. Advances in Robotics & Automation. 2016;5(01): 1–5. https://doi.org/10.4172/2168-9695.1000139ChinniahY2016Robot safety: overview of risk assessment and reductionAdvances in Robotics & Automation201650115https://doi.org/10.4172/2168-9695.1000139Search in Google Scholar
Alvarado M.L. A risk assessment of human-robot interface operations to control the potential of injuries/losses at XYZ manufacturing company. 2002.AlvaradoM.LA risk assessment of human-robot interface operations to control the potential of injuries/losses at XYZ manufacturing company2002Search in Google Scholar
Siying Yang, Yifan Zhong, Dawei Feng, Rita Yi Man Li, Xue-Feng Shao, Wei Liu. Robot application and occupational injuries: Are robots necessarily safer?. Safety Science. 2022;147: 105623. https://doi.org/10.1016/j.ssci.2021.105623YangSiyingZhongYifanFengDaweiMan LiRita YiShaoXue-FengLiuWeiRobot application and occupational injuries: Are robots necessarily safer?Safety Science2022147105623https://doi.org/10.1016/j.ssci.2021.105623Search in Google Scholar
Dhillon B.S, Anude O.C. Robot safety and reliability: A review, Micro-electronics Reliability. 1993;33(3): 413–429. https://doi.org/10.1016/0026-2714(93)90030-3DhillonB.SAnudeO.CRobot safety and reliability: A reviewMicro-electronics Reliability1993333413429https://doi.org/10.1016/0026-2714(93)90030-3Search in Google Scholar
Falandys K, Kurc K, Burghardt A, Szybicki D. Automation of the Edge Deburring Process and Analysis of the Impact of Selected Parameters on Forces and Moments Induced during the Process. Applied Sciences. 2023;13(17): 9646. https://doi.org/10.3390/app13179646FalandysKKurcKBurghardtASzybickiDAutomation of the Edge Deburring Process and Analysis of the Impact of Selected Parameters on Forces and Moments Induced during the ProcessApplied Sciences202313179646https://doi.org/10.3390/app13179646Search in Google Scholar
Gusri A.I, Yanuar B, Yasir M.A. (2020). Burr Formation Analysis When Micro Milling Ti-6al-4v Eli Using End Mill Carbide Insert. PalArch's Journal of Archaeology of Egypt/Egyptology. 2020;17(9): 4061–4067.GusriA.IYanuarBYasirM.A2020Burr Formation Analysis When Micro Milling Ti-6al-4v Eli Using End Mill Carbide InsertPalArch's Journal of Archaeology of Egypt/Egyptology202017940614067Search in Google Scholar
Matuszak J, Zaleski K. Warunki technologiczne procesu usuwania zadziorów z przedmiotów wykonanych ze stopów aluminium. Przegląd Mechaniczny. 2016;(12): 29–32. https://doi.org/10.15199/148.2016.12.5MatuszakJZaleskiKWarunki technologiczne procesu usuwania zadziorów z przedmiotów wykonanych ze stopów aluminiumPrzegląd Mechaniczny2016122932https://doi.org/10.15199/148.2016.12.5Search in Google Scholar
Kurniawan R, Kumaran S.T, Prabu V.A, Zhen Y, Park K.M, Kwak Y.I, Ko T.J. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement. 2017;110: 98–115. https://doi.org/10.1016/j.measurement.2017.06.008KurniawanRKumaranS.TPrabuV.AZhenYParkK.MKwakY.IKoT.JMeasurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP compositeMeasurement201711098115https://doi.org/10.1016/j.measurement.2017.06.008Search in Google Scholar
Kim Y.G, Kim K.J, Kim K.H. Efficient Removal of Milling Burrs by Abrasive Flow. International Journal of Precision Engineering and Manufacturing. 2021;22: 441–451. https://doi.org/10.1007/s12541-020-00455-0KimY.GKimK.JKimK.HEfficient Removal of Milling Burrs by Abrasive FlowInternational Journal of Precision Engineering and Manufacturing202122441451https://doi.org/10.1007/s12541-020-00455-0Search in Google Scholar
Makulavičius M, Petkevičius S, Rožėnė J, Dzedzickis A, Bučinskas V. Industrial Robots in Mechanical Machining: Perspectives and Limitations. Robotics. 2023;12(6): 160. https://doi.org/10.3390/robotics12060160MakulavičiusMPetkevičiusSRožėnėJDzedzickisABučinskasVIndustrial Robots in Mechanical Machining: Perspectives and LimitationsRobotics2023126160https://doi.org/10.3390/robotics12060160Search in Google Scholar
Iglesias I, Sebastián M.A, Ares J.E. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering. 2015;132: 911–917. https://doi.org/10.1016/j.proeng.2015.12.577IglesiasISebastiánM.AAresJ.EOverview of the State of Robotic Machining: Current Situation and Future PotentialProcedia Engineering2015132911917https://doi.org/10.1016/j.proeng.2015.12.577Search in Google Scholar
Pandremenos J, Doukas C, Stavropoulos P, Chtabsolouris G. Machining with robots: a critical review. Proceedings of DET2011. 1–9.PandremenosJDoukasCStavropoulosPChtabsolourisGMachining with robots: a critical reviewProceedings of DET2011.19Search in Google Scholar
Denkena B, Bergmann B, Lepper T. Design and optimization of a machining robot. Procedia Manufacturing. 2017;14: 89–96. https://doi.org/10.1016/j.promfg.2017.11.010DenkenaBBergmannBLepperTDesign and optimization of a machining robotProcedia Manufacturing2017148996https://doi.org/10.1016/j.promfg.2017.11.010Search in Google Scholar
Klimchik A, Ambiehl A, Garnier S, Furet B, Pashkevich A. Efficiency evaluation of robots in machining applications using industrial performance measure. Robotics and Computer-Integrated Manufacturing. 2017;48: 12–29. https://doi.org/10.1016/j.rcim.2016.12.005KlimchikAAmbiehlAGarnierSFuretBPashkevichAEfficiency evaluation of robots in machining applications using industrial performance measureRobotics and Computer-Integrated Manufacturing2017481229https://doi.org/10.1016/j.rcim.2016.12.005Search in Google Scholar
Pan Z, Zhang H, Zhu Z, Wang J. Chatter analysis of robotic machining process. Journal of Materials Processing Technology. 2006;173(3): 301–309. https://doi.org/10.1016/j.jmatprotec.2005.11.033PanZZhangHZhuZWangJChatter analysis of robotic machining processJournal of Materials Processing Technology20061733301309https://doi.org/10.1016/j.jmatprotec.2005.11.033Search in Google Scholar
Schnoes F, Zaeh M.F. Model-based planning of machining operations for industrial robots. Procedia CIRP. 2019;82: 497–502. https://doi.org/10.1016/j.procir.2019.04.331SchnoesFZaehM.FModel-based planning of machining operations for industrial robotsProcedia CIRP201982497502https://doi.org/10.1016/j.procir.2019.04.331Search in Google Scholar
Kim S.H, Nam E, Ha T.I, Hwang S.H, Lee J.H, Park S.H, Min B.K. Robotic machining: A review of recent progress. International Journal of Precision Engineering and Manufacturing. 2019;20: 1629–1642. https://doi.org/10.1007/s12541-019-00187-wKimS.HNamEHaT.IHwangS.HLeeJ.HParkS.HMinB.KRobotic machining: A review of recent progressInternational Journal of Precision Engineering and Manufacturing20192016291642https://doi.org/10.1007/s12541-019-00187-wSearch in Google Scholar
Burghardt A, Kurc K, Szybicki D, Muszyńska M, Szczęch T. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology. Research Journal. 2017;11(1): 232–236. https://doi.org/10.12913/22998624/68466BurghardtAKurcKSzybickiDMuszyńskaMSzczęchTMonitoring the parameters of the robot-operated quality control processAdvances in Science and Technology. Research Journal2017111232236https://doi.org/10.12913/22998624/68466Search in Google Scholar
Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manipulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490OnsteinI.FSemeniutaOBjerkengMDeburring using robot manipulators: A reviewIn2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEEhttps://doi.org/10.1109/SIMS49386.2020.9121490Search in Google Scholar
Posada J.R.D, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A. Automatic programming and control for robotic deburring. In Proceedings of ISR 2016: 47st International Symposium on Robotics: 1–8. VDE.PosadaJ.R.DKumarSKussASchneiderUDrustMDietzTVerlAAutomatic programming and control for robotic deburringIn Proceedings of ISR 2016: 47st International Symposium on Robotics: 1–8. VDE.Search in Google Scholar
Hu J, Kabir A.M, Hartford S.M, Gupta S.K, Pagilla P.R. Robotic deburring and chamfering of complex geometries in high-mix/low-volume production applications. In 2020 IEEE 16th international conference on automation science and engineering (CASE): 1155–1160. IEEE.HuJKabirA.MHartfordS.MGuptaS.KPagillaP.RRobotic deburring and chamfering of complex geometries in high-mix/low-volume production applicationsIn 2020 IEEE 16th international conference on automation science and engineering (CASE): 1155–1160. IEEE.Search in Google Scholar
Bottin M, Cocuzza S, Massaro M. Variable Stiffness Mechanism for the Reduction of Cutting Forces in Robotic Deburring. Applied Sciences. 2021;11(6): 2883. https://doi.org/10.3390/app11062883BottinMCocuzzaSMassaroMVariable Stiffness Mechanism for the Reduction of Cutting Forces in Robotic DeburringApplied Sciences20211162883https://doi.org/10.3390/app11062883Search in Google Scholar
Wang Q, Wang W, Zheng L, Yun C. Force control-based vibration suppression in robotic grinding of large thin-wall shells. Robotics and Computer-Integrated Manufacturing. 2021;67: 102031. https://doi.org/10.1016/j.rcim.2020.102031WangQWangWZhengLYunCForce control-based vibration suppression in robotic grinding of large thin-wall shellsRobotics and Computer-Integrated Manufacturing202167102031https://doi.org/10.1016/j.rcim.2020.102031Search in Google Scholar
Zhu D, Feng X, Xu X, Yang Z, Li W, Yan S, Ding H. Robotic grinding of complex components: a step towards efficient and intelligent machining–challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing. 2020;65: 101908. https://doi.org/10.1016/j.rcim.2019.101908ZhuDFengXXuXYangZLiWYanSDingHRobotic grinding of complex components: a step towards efficient and intelligent machining–challenges, solutions, and applicationsRobotics and Computer-Integrated Manufacturing202065101908https://doi.org/10.1016/j.rcim.2019.101908Search in Google Scholar
Matuszak J, Kłonica M, Zagórski I. Effect of brushing conditions on axial forces in ceramic brush surface treatment. In 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAero-Space); 644–648: IEEE. https://doi.org/10.1109/MetroAeroSpace.2019.8869605MatuszakJKłonicaMZagórskiIEffect of brushing conditions on axial forces in ceramic brush surface treatmentIn2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAero-Space)644648IEEE. https://doi.org/10.1109/MetroAeroSpace.2019.8869605Search in Google Scholar
Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manipulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490OnsteinI.FSemeniutaOBjerkengMDeburring using robot manipulators: A reviewIn 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490Search in Google Scholar
Korzyński M. Metodyka eksperymentu. Planowanie, realizacja i statystyczne operacowanie wyników eksperymentów technologicznych. Wydanie II. Wydawnictwa Naukowo-Techniczne; 2017.KorzyńskiMMetodyka eksperymentu. Planowanie, realizacja i statystyczne operacowanie wyników eksperymentów technologicznych. Wydanie IIWydawnictwa Naukowo-Techniczne2017Search in Google Scholar
Chomsamutr K, Jongprasithporn S. Optimization parameters of tool life model using the Taguchi approach and response surface methodology. International Journal of Computer Science Issues (IJCSI). 2012;9(1):120.ChomsamutrKJongprasithpornSOptimization parameters of tool life model using the Taguchi approach and response surface methodologyInternational Journal of Computer Science Issues (IJCSI)201291120Search in Google Scholar
Bhushan R. K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production. 2013;39: 242–254. https://doi.org/10.1016/j.jclepro.2012.08.008BhushanR. K.Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle compositesJournal of cleaner production201339242254https://doi.org/10.1016/j.jclepro.2012.08.008Search in Google Scholar