Uneingeschränkter Zugang

Effect of Pore Architecture of 3D Printed Open Porosity Cellular Structures on Their Resistance to Mechanical Loading: Part I – Experimental Studies


Zitieren

Ruiz de Galarreta S, Jeffers JRT, Ghouse S. A validated finite element analysis procedure for porous structures. Mater Des. 2020 Apr 1;189:108546. Search in Google Scholar

Guerra Silva R, Torres MJ, Zahr Viñuela J. A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing. Polymers (Basel) [Internet]. 2021 Jul 1 [cited 2023 Jan 30];13(13). Available from: https://pubmed.ncbi.nlm.nih.gov/34208960/ Search in Google Scholar

Cipriani CE, Ha T, Martinez Defilló OB, Myneni M, Wang Y, Benjamin CC, et al. Structure–Processing–Property Relationships of 3D Printed Porous Polymeric Materials. ACS Mater Au. 2021 Sep 8;1(1): 69–80. Search in Google Scholar

Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol. 2020 Jun 17;8:609. Search in Google Scholar

Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018 Jan 1;21(1):22–37. Search in Google Scholar

Gadomska-Gajadhur A, Łojek K, Szymaniak M, Gadomska A. Mate-riały porowate do regeneracji tkanki chrzęstnej i kostnej. Wyr Med. 2018;3. Search in Google Scholar

Kruk A, Gadomska-Gajadhur A, Ruskowski P, Chwojnowski A, Synoradzki L. Otrzymywanie polilaktydowych rusztowań komórkowych o strukturze gąbczastej – badania wstępne i optymalizacja procesu. Polimery. T. 62. 2017;2(2):118–26. Search in Google Scholar

Mierzejewska Ż. Technologia SLS – charakterystyka i zastosowanie selektywnego spiekania laserowego w inżynierii biomedycznej. J Technol Exploit Mech Eng. 2015;1:178–90. Search in Google Scholar

Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des [Internet]. 2019 Dec 1 [cited 2023 Jun 16];183(10):108137. Available from: https://dx.doi.org/10.1115/1.4037305 Search in Google Scholar

Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des [Internet]. 2019;183:108137. Available from: https://doi.org/10.1016/j.matdes.2019.108137 Search in Google Scholar

Uribe-Lam E, Treviño-Quintanilla CD, Cuan-Urquizo E, Olvera-Silva O. Use of additive manufacturing for the fabrication of cellular and lattice materials: a review. https://doi.org/101080/1042691420201819544 [Internet]. 2020 [cited 2023 Jun 16];36(3):257–80. Available from: https://www.tandfonline.com/doi/abs/10.1080/10426914.2020.1819544 Search in Google Scholar

Tao W, Leu MC. Design of lattice structure for additive manufacturing. Int Symp Flex Autom ISFA 2016. 2016 Dec 16;325–32. Search in Google Scholar

Bhat C, Kumar A, Lin SC, Jeng JY. Design, fabrication, and properties evaluation of novel nested lattice structures. Addit Manuf. 2023 Apr 25;68:103510. Search in Google Scholar

Kantaros A, Piromalis D. Fabricating Lattice Structures via 3D Printing: The Case of Porous Bio-Engineered Scaffolds. Appl Mech 2021, Vol 2, Pages 289-302 [Internet]. 2021 May 25 [cited 2023 Jun 16];2(2):289–302. Available from: https://www.mdpi.com/2673-3161/2/2/18/htm Search in Google Scholar

Yuan S, Li S, Zhu J, Tang Y. Additive manufacturing of polymeric composites from material processing to structural design. Compos Part B Eng [Internet]. 2021;219(April):108903. Available from: https://doi.org/10.1016/j.compositesb.2021.108903 Search in Google Scholar

Hossain U, Ghouse S, Nai K, Jeffers JR. Controlling and testing anisotropy in additively manufactured stochastic structures. Addit Manuf. 2021 Mar 1;39:101849. Search in Google Scholar

Pan C, Han Y, Lu J. Design and Optimization of Lattice Structures: A Review. Appl Sci 2020, Vol 10, Page 6374 [Internet]. 2020 Sep 13 [cited 2023 Jun 16];10(18):6374. Available from: https://www.mdpi.com/2076-3417/10/18/6374/htm Search in Google Scholar

Wang P;, Yang F;, Zhao J, Wang P, Yang F, Zhao J. Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading. Mater 2022, Vol 15, Page 1949 [Internet]. 2022 Mar 6 [cited 2022 Aug 5];15(5):1949. Available from: https://www.mdpi.com/1996-1944/15/5/1949/htm Search in Google Scholar

Beloshenko V, Beygelzimer Y, Chishko V, Savchenko B, Sova N, Verbylo D, et al. Mechanical Properties of Thermoplastic Polyurethane-Based Three-Dimensional-Printed Lattice Structures: Role of Build Orientation, Loading Direction, and Filler. 3D Print Addit Manuf [Internet]. 2021 May 14 [cited 2021 Nov 4];3dp.2021.0031. Available from: https://www.liebertpub.com/doi/abs/10.1089/3dp.2021.0031 Search in Google Scholar

Li S, Yuan S, Zhu J, Zhang W, Tang Y, Wang C, et al. Optimal and adaptive lattice design considering process-induced material anisotropy and geometric inaccuracy for additive manufacturing. Struct Multidiscip Optim. 2022 Jan 1;65(1):1–16. Search in Google Scholar

Song J, Wang Y, Zhou W, Fan R, Yu B, Lu Y, et al. Topology optimization-guided lattice composites and their mechanical characterizations. Compos Part B Eng. 2019 Mar 1;160:402–11. Search in Google Scholar

Bahrami Babamiri B, Askari H, Hazeli K. Deformation mechanisms and post-yielding behavior of additively manufactured lattice structures. Mater Des. 2020 Mar 1;188. Search in Google Scholar

Yavas D, Liu Q, Zhang Z, Wu D. Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Mater Des [Internet]. 2022 May 1 [cited 2022 Nov 3];217:110613. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264127522002349 Search in Google Scholar

Yang L, Yan C, Cao W, Liu Z, Song B, Wen S, et al. Compression– compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater. 2019 Dec 1;181:49–66. Search in Google Scholar

Park JH, Park K. Compressive behavior of soft lattice structures and their application to functional compliance control. Addit Manuf. 2020 May 1;33:101148. Search in Google Scholar

Zhang L, Lifton J, Hu Z, Hong R, Feih S. Influence of geometric defects on the compression behaviour of thin shell lattices fabricated by micro laser powder bed fusion. Addit Manuf [Internet]. 2022 Oct 1 [cited 2022 Dec 20];58:103038. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214860422004304 Search in Google Scholar

Zhao Z, Wu Z, Yao D, Wei Y, Li J. Mechanical properties and failure mechanisms of polyamide 12 gradient scaffolds developed with selective laser sintering. J Mech Behav Biomed Mater. 2023 Jul 1;143:105915. Search in Google Scholar

Han C, Li Y, Wang Q, Wen S, Wei Q, Yan C, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater. 2018 Apr 1;80:119–27. Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik