This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Barkanov E, Ozoliņš O, Eglītis E, Almeida F, Bowering MC, Watson G. Optimal design of composite lateral wing upper covers. Part I: Linear buckling analysis, Aerospace Science and Technology. 2014;38: 1-8. https://doi.org/10.1016/j.ast.2014.07.010Search in Google Scholar
Orifici AC, Thomson RS, Degenhardt R, Kling A, Rohwer K, Bayandor J. Degradation investigation in a postbuckling composite stiffened fuselage panel. Composite Structures. 2008;82(2): 217-224 https://doi.org/10.1016/j.compstruct.2007.01.012Search in Google Scholar
Bambach MR. Fibre composite strengthening of thin-walled steel vehicle crush tubes for frontal collision energy absorption. Thin-Walled Structures. 2013;66: 15-22. https://doi.org/10.1016/j.tws.2013.02.006Search in Google Scholar
Hutchinson JW, Koiter WT. Postbuckling theory. Applied Mechanics Reviews. 1970;12: 1353-1366.Search in Google Scholar
Byskov E, Hutchinson JW. Mode interaction in axially stiffened cylindrical shells. AIAA. 1977;15(7):941-948. https://doi.org/10.2514/3.7388Search in Google Scholar
Thompson JMT, Hunt GW. General theory of elastic stability. Wiley, New York; 1973.Search in Google Scholar
Goltermann P, Møllmann H. Interactive buckling in thin-walled beams—II. Applications. International Journal of Solids and Structures.1989;25(7): 729-749. https://doi.org/10.1016/0020-7683(89)90010-3Search in Google Scholar
Møllmann H, Goltermann P. Interactive buckling in thin-walled beams—I. Theory. International Journal of Solids and Structures. 1989;25(7): 715-728. https://doi.org/10.1016/0020-7683(89)90009-7Search in Google Scholar
Czapski P, Jakubczak P, Bieniaś J, Urbaniak M, Kubiak T. Influence of autoclaving process on the stability of thin-walled, composite columns with a square cross-section – Experimental and numerical studies. Composite Structures. 2020;250: 112594. https://doi.org/10.1016/j.compstruct.2020.112594Search in Google Scholar
Rozylo P, Debski H. Stability and load-carrying capacity of short composite Z-profiles under eccentric compression. Thin-Walled Structures. 2020;157: 107019. https://doi.org/10.1016/j.tws.2020.107019Search in Google Scholar
Rozylo P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Composite Structures. 2021;257: 113303. https://doi.org/10.1016/j.compstruct.2020.113303Search in Google Scholar
Bohlooly-Fotovat M, Kubiak T, Perlikowski P. Mixed mode nonlinear response of rectangular plates under static and dynamic compression. Thin-Walled Structures. 2023;184: 110542. https://doi.org/10.1016/j.tws.2023.110542Search in Google Scholar
Zhaochao L, Junxing Z. Nonlinear stability of the encased functionally graded porous cylinders reinforced by graphene nanofillers subjected to pressure loading under thermal effect. Composite Structures. 2020;233: 111584. https://doi.org/10.1016/j.compstruct.2019.111584Search in Google Scholar
Zhaochao L, Qian Z, Hua S, Xinhui X, Haidong K, Junxing Z. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure. Thin-Walled Structures. 2023;183: 110370. https://doi.org/10.1016/j.tws.2022.110370Search in Google Scholar
Guobin B, Zhihua O, Zhaochao L, Fangcheng L, Hui Z, Xingxing Z, Yonggui X. Static and buckling characteristics of the porous ring reinforced by graphene nanofillers. Engineering Structures. 2022;251: 113536. https://doi.org/10.1016/j.engstruct.2021.113536Search in Google Scholar
Yan T, Fujian T, Junxing Z, Zhaochao L. In-plane asymmetric buckling of an FGM circular arch subjected to thermal and pressure fields. Engineering Structures. 2021;239: 112268. https://doi.org/10.1016/j.engstruct.2021.112268Search in Google Scholar
Rozylo P. Failure phenomenon of compressed thin-walled composite columns with top-hat cross-section for three laminate lay-ups. Composite Structures. 2023;304: 116381. https://doi.org/10.1016/j.compstruct.2022.116381Search in Google Scholar
Wysmulski P. Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns. Composite Structures. 2023;305: 116446. https://doi.org/10.1016/j.compstruct.2022.116446Search in Google Scholar
Koiter WT. Elastic stability and post-buckling behaviour. Proceedings of the Symposium on Nonlinear Problems. University of Wisconsin Press. Wisconsin; 1963.Search in Google Scholar
Koiter WT. General theory of mode interaction in stiffened plate and shell structures. WTHD Report 590. Delft; 1976.Search in Google Scholar
Zaras J, Krolak M, Kotelko M. Metody doswiadczalne wyznaczania obciazen krytycznych i analizy zachowania się elementow konstrukcji w stanie zakrytycznym. X Krajowa Konferencja Wytrzymalosci Mate-rialow i Badania Materialow. Kudowa-Zdroj; 20–22 wrzesien, 2006.Search in Google Scholar
Rhodes J, Zaras J. Determination of critical loads by experimental methods, chapter. In: Kołakowski Z, Kowal-Michalska K, editors. Statics, dynamics and stability of structural elements and systems. Lodz: Lodz University of Technology, a series of monographs; 2012.Search in Google Scholar
Rozylo P, Teter A, Debski H, Wysmulski P, Falkowicz K. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression. Applied Composite Materials. 2017;24: 1251-1264. https://doi.org/10.1007/s10443-017-9583-ySearch in Google Scholar
Debski H, Rozylo P, Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures. 2020;252: 112716. https://doi.org/10.1016/j.compstruct.2020.112716Search in Google Scholar
Jones RM. Mechanics of composite materials. Taylor & Francis, Inc. Philadelphia; 1999.Search in Google Scholar