1. bookVolumen 16 (2022): Heft 4 (December 2022)
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Computational Investigation of Vibration Characteristics Analysis for Industrial Rotor

Online veröffentlicht: 08 Nov 2022
Volumen & Heft: Volumen 16 (2022) - Heft 4 (December 2022)
Seitenbereich: 373 - 381
Eingereicht: 14 Apr 2022
Akzeptiert: 25 Aug 2022
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Kushwaha N, Patel V. Modelling and analysis of a cracked rotor: a review of the literature and its implications. Arch Appl Mech. 2020;90(6):1215-45.10.1007/s00419-020-01667-6 Search in Google Scholar

2. Xie F, Aly A-M. Structural control and vibration issues in wind turbines: A review. Eng Struct. 2020;210:110087.10.1016/j.engstruct.2019.110087 Search in Google Scholar

3. Gunter E. Critical speed analysis of offset jeffcott rotor using english and metric units. RODYN Vib Inc, Charlottesville, VA. 2004. Search in Google Scholar

4. Cao H, Niu L, Xi S, Chen X. Mechanical model development of rolling bearing-rotor systems: A review. Mech Syst Signal Process. 2018;102:37-58.10.1016/j.ymssp.2017.09.023 Search in Google Scholar

5. Huaitao S, Jizong Z, Yu Z, Gang H, editors. Calculation and analysis of critical speed of high speed motor spindle rotor system. IOP Conf Ser Mater Sci Eng; 2018: IOP Publishing.10.1088/1757-899X/399/1/012025 Search in Google Scholar

6. Lee C-W. Vibration analysis of rotors: Springer Science & Business Media; 1993.10.1007/978-94-015-8173-8 Search in Google Scholar

7. Wang C, Zhang D, Ma Y, Liang Z, Hong J. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off. Mech Syst Signal Process. 2016;76:111-35.10.1016/j.ymssp.2016.02.054 Search in Google Scholar

8. Cardillo L, Corsini A, Delibra G, Rispoli F, Sheard AG, Venturini P. Predicting the performance of an industrial centrifugal fan incorporating cambered plate impeller blades. Period Polytech Mech Eng. 2014;58(1):15-25.10.3311/PPme.7397 Search in Google Scholar

9. Krishna BRV, Mudgala S, Seth D. A comparative dynamic analysis of rotor involving three engineering materials applying finite element analysis (FEA) simulation. Mater Today Proc. 2021;47:4003-14.10.1016/j.matpr.2021.04.250 Search in Google Scholar

10. Hnin MT, Htike TM. Investigation of natural frequency and critical speed for Jeffcott rotor system. J Res Appl Mech Eng. 2021;9(1). Search in Google Scholar

11. Nan JY, Wang M, Zan T, Zhang JX, editors. Vibration Characteristics Analysis of a High-Speed Horizontal Machining Center. Adv Mater Res; 2012: Trans Tech Publ.10.4028/www.scientific.net/AMR.472-475.849 Search in Google Scholar

12. Khan MM, Shailesh P, Prasad M. Rotor Dynamic Analysis Of Driving Shaft Of Dry Screw Vacuum Pump. 2019. Search in Google Scholar

13. Khamari DS, Kar PS, Jena S, Kumar J, Behera SK, editors. Rotordynamic Analysis of High-Speed Rotor Used in Cryogenic Turboexpander Using Transfer Matrix Method. Proceedings of the 6th National Symposium on Rotor Dynamics; 2021: Springer.10.1007/978-981-15-5701-9_11 Search in Google Scholar

14. Bai B, Zhang L, Guo T, Liu C. Analysis of dynamic characteristics of the main shaft system in a hydro-turbine based on ANSYS. Procedia Eng. 2012;31:654-8.10.1016/j.proeng.2012.01.1081 Search in Google Scholar

15. Sinha JK, Lees A, Friswell M. Estimating unbalance and misalignment of a flexible rotating machine from a single run-down. J Sound Vib. 2004;272(3-5):967-89.10.1016/j.jsv.2003.03.006 Search in Google Scholar

16. Yadav H, Upadhyay S, Harsha S. Study of effect of unbalanced forces for high speed rotor. Procedia Eng. 2013;64:593-602.10.1016/j.proeng.2013.09.134 Search in Google Scholar

17. Fegade R, Patel V, Nehete R, Bhandarkar B. Unbalanced response of rotor using ansys parametric design for different bearings. Int J Eng Sci Emerg Technol. 2014;7(1):506-15 Search in Google Scholar

18. Khawaja H, Andleeb Z, Moatamedi M. Multiphysics based Modal and Harmonic Analysis of Axial Turbines. Int J Multiphysic. 2022;16(1):81-94. Search in Google Scholar

19. Shuming L, Yujia W, editors. Damping Optimization of High Pressure Rotor Support Based on Harmonic Response Analysis. J Phys Conf Ser; 2021: IOP Publishing.10.1088/1742-6596/1861/1/012112 Search in Google Scholar

20. Nagaraj B, Patil L, Kamanat PK, Dhuri K, Azam MS. Rotordynamic Analysis of Bolted Disk-Drum Rotor with Contact Nonlinearity. Search in Google Scholar

21. Xu H, Wang YQ. Differential transformation method for free vibration analysis of rotating Timoshenko beams with elastic boundary conditions. Int J Appl Mech. 2022;14(6):21.10.1142/S1758825122500466 Search in Google Scholar

22. Chong-Won L. Vibration analysis of rotors. SOLID Mech ITS Appl. 1993;21:156. Search in Google Scholar

23. Ansys. Rotordynamic Analysis Guide. 2021:158. Search in Google Scholar

24. Grunwald B. Vibration analysis of shaft in SolidWorks and ANSYS. 2018. Search in Google Scholar

25. Mansoora HI, Al-Shammari M, Al-Hamood A, editors. Theoretical Analysis of the Vibrations in Gas Turbine Rotor. IOP Conf Ser Mater Sci Eng; 2020: IOP Publishing.10.1088/1757-899X/671/1/012157 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo