1. bookVolumen 16 (2022): Heft 3 (September 2022)
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

A New Method of the Positioning and Analysis of the Roughness Deviation in Five-Axis Milling of External Cylindrical Gear

Online veröffentlicht: 15 Jun 2022
Volumen & Heft: Volumen 16 (2022) - Heft 3 (September 2022)
Seitenbereich: 207 - 214
Eingereicht: 07 Feb 2022
Akzeptiert: 24 Apr 2022
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Five-axis milling is a modern, flexible and constantly developing manufacturing process, which can be used for the machining of external cylindrical gears by means of cylindrical end mills and special disc mills on universal multi-axis machining centres. The article presents a new method of positioning the tip and the axis of the end mill and the disc cutter in order to ensure a constant value of deviation of the theoretical roughness Rth along the entire length of the tooth profile. The first part presents a mathematical model of the five-axis milling process of the cylindrical gear and an algorithm for calculating the Rth deviation values. The next section describes the positioning of the end mill and the disc cutter. Then, a new method for the empirical determination of the distribution of the involute root angle Δui and the data description by means of the interpolation function are presented and described. In the conducted numerical tests, the influence of the geometrical parameters of the cylindrical gear on the deviation Rth is determined, assuming a constant Rth value in the five-axis milling process.

1. Burek J, Gdula M, Płodzień M, Buk J. Gear’s tooth profile shaping in dialog and parametric programming. Mechanik. 2015 Feb;2:142/7. Search in Google Scholar

2. Safarov DT, Kondrashov AG, Khafizov II. Improving the process efficiency of helical gears’ toothed rims at the stage of preproduction. IOP Conference Series: Materials Science and Engineering. 2019;570(012024). Search in Google Scholar

3. Gaiser U. 5-Axis Gear Manufacturing Gets Practical. Gear Technology. 2017;(March/April):32–4. Search in Google Scholar

4. Karpuschewski B, Knoche HJ, Hipke M. Gear finishing by abrasive processes. CIRP Annals - Manufacturing Technology. 2008;57(2): 621–40. Search in Google Scholar

5. Krömer M, Sari D, Löpenhaus C, Brecher C. Surface Characteristics of Hobbed Gears. Gear Technology [Internet]. 2017 [cited 2020 Feb 4];(July):68–75. www.geartechnology.com] Search in Google Scholar

6. Klocke F, Brumm M, Staudt J. Quality and surface of gears manufactured by free form milling with standard tools. Gear Technology. 2015;(January/February):64–9. Search in Google Scholar

7. Staudt J, Löpenhaus C, Klocke F. Performance of Gears Manufactured by 5-Axis Milling. Gear Technology [Internet]. 2017:58–65. www.geartechnology.com] Search in Google Scholar

8. Staudt J, Exner P. Einfluss der Oberflächenstruktur beim 5-Achs-Fräsen von Verzahnungen auf das Einsatzverhalten [Internet]. 2017 [cited 2020 Jan 24]. www.fva-net.de Search in Google Scholar

9. Guo E, Ren N, Liu Z, Zheng X, Zhou C. Study on tooth profile error of cylindrical gears manufactured by flexible free-form milling. International Journal of Advanced Manufacturing Technology. 2019;103(9–12):4443–51. Search in Google Scholar

10. Deng XZ, Li GG, Wei BY, Deng J. Face-milling spiral bevel gear tooth surfaces by application of 5-axis CNC machine tool. International Journal of Advanced Manufacturing Technology. 2014;71(5–8):1049–57. Search in Google Scholar

11. Shih YP, Chen SD. A flank correction methodology for a five-axis CNC gear profile grinding machine. Mechanism and Machine Theory [Internet]. 2012;47(1):31–45. http://dx.doi.org/10.1016/j.mechmachtheory.2011.08.009 Search in Google Scholar

12. Shih YP, Sun ZH, Wu FC. A disk tool cutting method for bevel gear manufacture on a five-axis machine. International Journal of Advanced Manufacturing Technology. 2018;94(1–4):855–65. Search in Google Scholar

13. Talar R, Jablonski P, Ptaszynski W. New method of machining teeth on unspecialised machine tools. Tehnicki Vjesnik. 2018 Feb 1;25(1):80–7. Search in Google Scholar

14. Talar R, Jablonski P. Modelling of spur gear cutting kinematics for multipurpose milling center. In: 2016 21st International Conference on Methods and Models in Automation and Robotics. Institute of Electrical and Electronics Engineers Inc.; 2016. p. 1133–6. Search in Google Scholar

15. Özel C. A study on cutting errors in the tooth profiles of the spur gears manufactured in CNC milling machine. International Journal of Advanced Manufacturing Technology. 2012;59(1–4):243–51. Search in Google Scholar

16. Solf M, Bieker R, Löpenhaus C, Klocke F, Bergs T. Influence of the machining strategy on the resulting properties of five-axis hard-milled bevel gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019;233 (21–22):7358–67. Search in Google Scholar

17. Suh SH, Lee ES, Kim HC, Cho JH. Geometric error measurement of spiral bevel gears using a virtual gear model for STEP-NC. International Journal of Machine Tools and Manufacture. 2002 Feb;42(3):335–42. Search in Google Scholar

18. Chmielik IP, Czarnecki H. Evaluation of gear tooth 3D surface topography. Mechanik. 2015 Jul;7:101–10. Search in Google Scholar

19. Litvin FL, Fuentes A. Gear Geometry and Applied Theory. Gear Geometry and Applied Theory. Cambridge University Press; 2004. Search in Google Scholar

20. Twardoch K. Digital Geometric Modelling of Teeth Profile By Using Cad Methodology. Scientific Journal of Silesian University of Technology Series Transport. 2014;82:271–9. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo