Uneingeschränkter Zugang

Development of a Testing Station for Empirical Verification of the Algebraic Model of Dry Ice Piston Extrusion

   | 27. Sept. 2021

Zitieren

1. Arendarski J (2006), Measurement uncertainty (in Polish), Warsaw University of Technology Publisher. Search in Google Scholar

2. Dudziak M, Kołodziej A, Domek G., et al. (2017), Multi-angularity – identification of parameters and compatibility conditions of the axisymmetric connection with form deviations Procedia Engineering, vol. 177 431-438. Search in Google Scholar

3. Dong S., Song B., Hansz B., et al. (2012), Modeling of dry ice blasting and its application in thermal spray, Material Research Innovations, Vol. 16, 61-66. Search in Google Scholar

4. Dong S., Song B., Hansz B., et al., (2013), Combination Effect of Dry-Ice Blasting and Substrate Preheating on Plasma-Sprayed CoNiCrAlY Splats, Journal of Thermal Spray Technology, Vol. 22, No. 1, https://doi.org/10.1007/s11666-012-9845-z.10.1007/s11666-012-9845-z Search in Google Scholar

5. Dzido A., Krawczyk P., Kurkus-Gruszecka M., et al. (2019) Analysis of the Liquid Natural Gas Energy Storage basing on the mathematical model, Energy Procedia, Vol. 159, 231-236. Search in Google Scholar

6. Dzido A., Krawczyk P., Kurkus-Gruszecka M. (2019), Numerical Analysis of Dry Ice Blasting Convergent-Divergent Supersonic Nozzle, Energies, Vol. 12, 4787. Search in Google Scholar

7. Dzido A., Krawczyk., Badyda K., Chondrokostas, (2021), Operational parameters impact on the performance of dry-ice blasting nozzle, Energy, Vol. 214, https://doi.org/10.1016/j.energy.2020.118847.10.1016/j.energy.2020.118847 Search in Google Scholar

8. Górecki J., Malujda I., Talaśka K., et al. (2015) Static compression tests of concentrated crystallized carbon dioxide, Applied Mechanics and Materials, Vol. 816, 490-495. Search in Google Scholar

9. Górecki J., Malujda I., Talaśka K., et al. (2017), Dry ice compaction in piston extrusion process, Acta mechanica et automatic, Vol. 11, no. 4, 313-316. Search in Google Scholar

10. Górecki J., Malujda I., Talaśka K., et al. (2017), Influence of the compression length on the ultimate stress in the process of mechanical agglomeration of dry ice, Procedia Engineering, vol. 177, 363-368. Search in Google Scholar

11. Górecki J., Malujda I., Wilczyński D. (2019), The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice, Matec Web of Conferences, Vol.254, 05001. Search in Google Scholar

12. Górecki J., Malujda I., Wilczyński D., Wojtkiak D. (2019), Influence of the face surface shape of the piston on the limit value of compaction stress in the process of dry ice agglomeration, Matec Web of Conferences, Vol.254, 2019, 06001. Search in Google Scholar

13. Górecki J., (2020), Preliminary analysis of the sensitivity of the algebraic dry ice agglomeration model using multi-channel dies to change their geometrical parameters, IOP Conference Series: Materials Science and Engineering, 776, 012030.10.1088/1757-899X/776/1/012030 Search in Google Scholar

14. Górecki J., Fierek A., Talaśka K., et al., (2020), The influence of the limit stress value on the sublimation rate during the dry ice densification process, IOP Conference Series: Materials Science and Engineering, 776, 012072.10.1088/1757-899X/776/1/012072 Search in Google Scholar

15. Górecki J., Talaśka K., Wałęsa K., et al., (2020), Mathematical Model Describing the Influence of Geometrical Parameters of Multichannel Dies on the Limit Force of Dry Ice Extrusion Process, Materials, vol. 13(15), 3317-1 – 3317-11.10.3390/ma13153317 Search in Google Scholar

16. Ishiguro M., Dan K., Kaneko S., et al. (2020) Snow Consolidation Properties by using Mechanical Press Machine, Journal of the Institute of Industrial Applications Engineers, Vol. 7(3), 83-90. Search in Google Scholar

17. Kukla M, Górecki J, Malujda I, et al. (2017) The determination of mechanical properties of magnetorheological elastomers (MREs) Procedia Engineering, vol. 177 324-330. Search in Google Scholar

18. Li M., Liu W., Qing X., et al. (2016), Feasibility study of a new approach to removal of paint coatings in remanufacturing, Journal of Materials Processing Technology, Vol. 234, 102-112. Search in Google Scholar

19. Liu Y., Calvert G., Hare C., et al. (2012), Size measurement of dry ice particles produced from liquid carbon dioxide, Journal of Aerosol Science, Vol. 48, 1-9. Search in Google Scholar

20. Liu Y., Hirama D., Matusaka S. (2017), Particle removal process during application of impinging dry ice jet, Powder Technology, 607-613.10.1016/j.powtec.2011.11.032 Search in Google Scholar

21. Liu Y., Maruyama H., Matsusaka S. (2010), Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide, Advanced Powder Technology, Vol. 21, 652-657. Search in Google Scholar

22. Malujda I., Wilczyński D., (2016) Mechanical Properties Investigation of Natural Polymers, Procedia Engineering vol. 136, 263-268. Search in Google Scholar

23. Masa V., Kuba P., Perilak D., Lokaj J., (2014), Decrease in Consumption of Compressed Air in Dry Ice Blasting Machine, Chemical Engineering Transactions, 39, 805-810, https://doi.org/10.3303/CET1439135. Search in Google Scholar

24. Masa V., Kuba P. (2016), Efficient use of compressed air for dry ice blasting, Journal of Cleaner Production, Vol. 111, 76-84. Search in Google Scholar

25. Mazzoldi A., Hill T., Colls J. (2008), CO2 transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank, International Journal of Greenhouse Gas Control, Vol. 2, 210-218. Search in Google Scholar

26. Mikołajczak A., Krawczyk P., Stępień M., et al. (2018), Preliminary specification of the dry ice blasting converging-divergent nozzle parameters basing on the standard (analytical) methods, Rynek Energii, Vol. 4, 91-96. Search in Google Scholar

27. Muckenhaupt D., Zutzmann T., Rudek A., Russ G., (2019), An Experimental and Numerical Procedure for Energetic and Acoustic Optimization of Dry-ice Blasting Processes, Chemical Engineering Transactions, Vol. 74, 967-972, https://doi.org/10.3303/CET1974162 Search in Google Scholar

28. Otto C., Zahn S., Rost F., et al. (2011), Physical Methods of cleaning And Disinfection of Surfaces, Food Engineering Review, Vol. 3, 171-188. Search in Google Scholar

29. Talaśka K., (2017), Analysis of the energy efficiency of the shredded wood material densification process Procedia Engineering 177 352-357.10.1016/j.proeng.2017.02.205 Search in Google Scholar

30. Spur G., Uhlmann E., Elbing F. (1999), Dry-ice blasting for cleaning: process, optimization and application, Wear, Vol. 233–235, 402–411.10.1016/S0043-1648(99)00204-5 Search in Google Scholar

31. Uhlmann E., Kretzschmar M., Elbing F., et al. (2010), Deburring with CO2 Snow Blasting. In: J. Aurich, D. Dornfeld (eds) Burrs - Analysis, Control and Removal. Springer, Berlin, Heidelberg.10.1007/978-3-642-00568-8_19 Search in Google Scholar

32. Wałęsa K., Malujda I., Talaśka K. (2018), Butt welding of round drive belts, Acta Mechanica et Automatica, Vol. 12, no. 2, s. 115-126 Search in Google Scholar

33. Wałęsa K., Malujda M., Górecki J., et al. (2019), The temperature distribution during heating in hot plate welding process, MATEC Web of Conferences, Vol. 254, 0233-1 - 02033-11. Search in Google Scholar

34. Wałęsa K., Malujda I., Wilczyński D. (2019), Shaping the parameters of cylindrical belt surface in the joint area, Acta Mechanica et Automatica, vol. 13, 255-261. Search in Google Scholar

35. Wałęsa K., Malujda I., Wilczyński D. (2020), Experimental research of the thermoplastic belt plasticizing process in the hot plate welding, IOP Conference Series: Materials Science and Engineering, 776, 012011.10.1088/1757-899X/776/1/012011 Search in Google Scholar

36. Wałęsa K., Malujda I., Górecki J. (2020), Experimental research of the mechanical properties of the round drive belts made of thermoplastic elastomer, IOP Conference Series: Materials Science and Engineering, 776, 012107.10.1088/1757-899X/776/1/012107 Search in Google Scholar

37. Wilczyński D., Talaśka K., Malujda I., et al. (2018) Experimental research on biomass cutting process MATEC Web of Conferences vol. 157 07016. Search in Google Scholar

38. Wilczyński D, Berdychowski M, Wojtkowiak D, et al. (2019) Experimental and numerical tests of the compaction process of loose material in the form of sawdust, MATEC Web of Conferences, vol. 254 02042. Search in Google Scholar

39. Wilczyński D., Malujda I., Górecki J. et al. (2019) Experimental research on the process of cutting transport belts, MATEC Web of Conferences, vol. 254 05014. Search in Google Scholar

40. Wilczyński D., Malujda I., Górecki J., et al., (2019) Research on the process of biomass compaction in the form of straw, MATEC Web of Conferences, vol. 254 05015. Search in Google Scholar

41. Wilczyński D., Wałęsa K., Berdychowski M., et al., (2020) Biomass cutting tests to determine the lowest value of the process force, IOP Conf. Series: Materials Science and Engineering vol. 776 012014. Search in Google Scholar

42. Witte A., Bobal M., David R., et al. (2017), Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment, LWT - Food Science and Technology, Vol. 75, 735-741. Search in Google Scholar

43. Wojtkowiak D., Talaśka K., Malujda I., et al. (2018), Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch. The International Journal of Advanced Manufacturing Technology https://doi.org/10.1007/s00170-018-2381-3.10.1007/s00170-018-2381-3 Search in Google Scholar

44. Wojtkowiak D. and Talaśka K. (2019) Determination of the effective geometrical features of the piercing punch for polymer composite belts The International Journal of Advanced Manufacturing Technology, vol. 104, 315-332. Search in Google Scholar

45. Wojtkowiak D., Talaśka K., Wilczyński D., et al. (2021), Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model. Energies, Vol. 14, No. 1, http://dx.doi.org/10.3390/en14020317.10.3390/en14020317 Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik