Uneingeschränkter Zugang

Comparative Study of the Parallel and Angular Electrical Gripper for Industrial Applications


Zitieren

1. Birglen L., Schlicht, T. (2018), A statistical review of industrial robotic grippers., Robotics and Computer-Integrated Manufacturing, 49, 88-97.10.1016/j.rcim.2017.05.007 Search in Google Scholar

2. Chen Z., Xu J., Yu L., Xiong Y., Zhu H. (2014, May), Design and implementation of the electric gripper control system based on the DSP. In The 26th Chinese Control and Decision Conference (2014 CCDC), (pp. 3513-3517, ). IEEE.10.1109/CCDC.2014.6852787 Search in Google Scholar

3. Datta R., Pradhan S., Bhattacharya B. (2015), Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm., IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(1), 16-26. Search in Google Scholar

4. Fotuhi M. J., Bingul Z. (2021), Fuzzy torque trajectory control of a rotary series elastic actuator with nonlinear friction compensation., ISA transactions.10.1016/j.isatra.2021.01.020 Search in Google Scholar

5. Fotuhi M. J., & Bingul Z. (2021), Novel fractional hybrid impedance control of series elastic muscle-tendon actuator., Industrial Robot: the international journal of robotics research and application.10.1108/IR-10-2020-0236 Search in Google Scholar

6. Fotuhi M. J., Yılmaz O., Bingul Z. (2020), Human postural ankle torque control model during standing posture with a series elastic muscle-tendon actuator., SN Applied Sciences, 2(2), 1-8.10.1007/s42452-020-1955-5 Search in Google Scholar

7. Hassan A., Abomoharam M. (2017), Modeling and design optimization of a robot gripper mechanism., Robotics and Computer-Integrated Manufacturing, 46, 94-103.10.1016/j.rcim.2016.12.012 Search in Google Scholar

8. Heilala J., Ropponen T., & Airila M. (1992), Mechatronic design for industrial grippers., Mechatronics, 2(3), 239-255.10.1016/0957-4158(92)90019-K Search in Google Scholar

9. Honarpardaz M., Tarkian M., Ölvander J., Feng X. (2017), Finger design automation for industrial robot grippers: A review., Robotics and Autonomous Systems, 87, 104-119.10.1016/j.robot.2016.10.003 Search in Google Scholar

10. Hu Z., Wan W., Harada K. (2019), Designing a mechanical tool for robots with two-finger parallel grippers., IEEE Robotics and Automation Letters, 4(3), 2981-2988. Search in Google Scholar

11. Kuang L., Lou Y., Song S. (2017), Design and fabrication of a novel force sensor for robot grippers., IEEE Sensors Journal, 18(4), 1410-1418. Search in Google Scholar

12. Kumar R., Mehta U., Chand P. (2017), A low cost linear force feedback control system for a two-fingered parallel configuration gripper., Procedia computer science, 105, 264-269.10.1016/j.procs.2017.01.220 Search in Google Scholar

13. Li Q. M., Qin Q. H., Zhang S. W., Deng H. (2011), Optimal design for heavy forging robot grippers., In Applied Mechanics and Materials (Vol., 44, pp. 743-747)., Trans Tech Publications Ltd.10.4028/www.scientific.net/AMM.44-47.743 Search in Google Scholar

14. Li X., Chen W., Lin W., Low K. H. (2017), A variable stiffness robotic gripper based on structure-controlled principle., IEEE Transactions on Automation Science and Engineering, 15(3), 1104-1113. Search in Google Scholar

15. Liu C. H., Chung F. M., Chen Y., Chiu C. H., Chen T. L. (2020), Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper., IEEE/ASME Transactions on Mechatronics, 25(4), 1830-1840.10.1109/TMECH.2020.2997743 Search in Google Scholar

16. Liu Y., Zhang Y., Xu Q. (2016), Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams., IEEE/ASME Transactions on Mechatronics, 22(1), 476-486. Search in Google Scholar

17. Lu, Y., Xie, Z., Wang, J., Yue, H., Wu, M., & Liu, Y. (2019), A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator., International Journal of Mechanical Sciences, 159, 74-80.10.1016/j.ijmecsci.2019.05.041 Search in Google Scholar

18. Najjari B., Barakati S. M., Mohammadi A., Futohi M. J., Bostanian M. (2014), Position control of an electro-pneumatic system based on PWM technique and FLC., ISA transactions, 53(2), 647-657.10.1016/j.isatra.2013.12.02324485509 Search in Google Scholar

19. Nanda A. P. (2010), Design & Development of a Two-jaw parallel Pneumatic Gripper for Robotic Manipulation (Doctoral dissertation). Search in Google Scholar

20. Park T. M., Won S. Y., Lee S. R., Sziebig G. (2016, June), Force feedback based gripper control on a robotic arm. In, 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES), (pp. 107-112, ). IEEE.10.1109/INES.2016.7555102 Search in Google Scholar

21. Pham D. T., Yeo S. H. (1991), Strategies for gripper design and selection in robotic assembly., The International Journal of Production Research, 29(2), 303-316.10.1080/00207549108930072 Search in Google Scholar

22. Shaw J. S., Dubey V. (2016, August), Design of servo actuated robotic gripper using force control for range of objects., In 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS) (pp. 1-6). ), IEEE.10.1109/ARIS.2016.7886619 Search in Google Scholar

23. Shin D. H., Park T. S., Jeong C. P., Kim Y. G., An J. N. (2012), Study of torsion spring’s parameters with angular type grippers., In Advanced Materials Research (Vol., 502, pp. 355-359).. Trans Tech Publications Ltd.10.4028/www.scientific.net/AMR.502.355 Search in Google Scholar

24. Su K. H., Zhong Y. H. (2018, July), Design of Handling Gripper and its Application to Smart Pet Robot., In 2018 International Conference on Machine Learning and Cybernetics (ICMLC) (Vol., 1, pp. 105-108). IEEE..10.1109/ICMLC.2018.8527055 Search in Google Scholar

25. Tai K., El-Sayed A. R., Shahriari M., Biglarbegian M., Mahmud S. (2016), State of the art robotic grippers and applications., Robotics, 5(2), 11.10.3390/robotics5020011 Search in Google Scholar

26. Varanasi K. K., & Nayfeh S. A. (2004), The dynamics of lead-screw drives: low-order modeling and experiments., J. Dyn. Sys., Meas., Control, 126(2), 388-396.10.1115/1.1771690 Search in Google Scholar

27. Wang X., Xiao Y., Fan X., & Zhao Y. (2016, May), Design and grip force control of dual-motor drive electric gripper with parallel fingers., In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, (pp. 696-700, ). IEEE.10.1109/ITNEC.2016.7560450 Search in Google Scholar

28. Xu F., Wang B., Shen J., Hu J., Jiang G. (2018), Design and realization of the claw gripper system of a climbing robot., Journal of Intelligent & Robotic Systems, 89(3), 301-317. Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik