Uneingeschränkter Zugang

Modelling of Impulse Load Influence on the Stress State of Foam Materials with Positive and Negative Poisson’s Ratio


Zitieren

1. Brighenti R. (2014), Smart behaviour of layered plates through the use of auxetic materials, Thin-Walled Structures, 84, 432-442.10.1016/j.tws.2014.07.017Search in Google Scholar

2. Carneiro V., Meireles J., Puga H. (2013), Auxetic materials — A review, Materials Science-Poland, 31(4), 561-571.10.2478/s13536-013-0140-6Search in Google Scholar

3. Duncan O., Shepherd T., Moroney Ch., Foster L., Venkatraman Pr, Winwood K., Allen T., Alderson A. (2018), Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences, 8, 941, 1-33.10.3390/app8060941Search in Google Scholar

4. Evans K. (1991), Auxetic Polymers: A New Range of Materials, Endeavour, 15(4), 170–174.10.1016/0160-9327(91)90123-SSearch in Google Scholar

5. Grima J., Attard D., Gatt R., Cassar R. (2009), A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form, Advanced Engineering Materials, 11(7), 533-535.10.1002/adem.200800388Search in Google Scholar

6. Lakes R. S. (1991), Experimental Micro Mechanics Methods for Conventional and Negative Poisson’s Ratio Cellular Solids as Cosserat Continua, Journal of Engineering Materials and Technology, 113, 148-155.10.1115/1.2903371Search in Google Scholar

7. Lakes R. S. (2016), Physical Meaning of Elastic Constants in Cosserat, Void, and Microstretch Elasticity, Journal of Mechanics of Materials and Structues, 11(3), 217-229.10.2140/jomms.2016.11.217Search in Google Scholar

8. Li D., Dong L., Lakes R. (2016), A Unit Cell Structure with Tunable Poisson’s Ratio from Positive to Negative, Materials Letters, 164, 456-459.10.1016/j.matlet.2015.11.037Search in Google Scholar

9. Mikulich O., Shvabyuk V., Sulym H. (2017), Dynamic Stress Concentration at the Boundary of an Incision at the Plate under the Action of Weak Shock Waves, Acta Mechanica et Automatica, Vol. 11, No. 3, 217-221.Search in Google Scholar

10. Naik S., Dandagwhal R., Wani C., Giri S. (2019), A review on various aspects of auxetic materials. AIP Conference Proceedings, 2105 (1), 10.1063/1.5100689.10.1063/1.5100689Search in Google Scholar

11. Novak N., Vesenjak M., Ren Z. (2016), Auxetic Cellular Materials - a Review. Journal of Mechanical Engineering, 62(9), 485-493.10.5545/sv-jme.2016.3656Search in Google Scholar

12. Nowacki W. (1974), The Linear Theory of Micropolar Elasticity, Springer, New York.10.1007/978-3-7091-2920-3Search in Google Scholar

13. Ren X., Das R., Tran P., Ngo T., Xie Y. (2018), Auxetic Metamaterials and Structures: A Review, Smart Mater. Struct., 27, 1-38.Search in Google Scholar

14. Rueger Z., Lakes R.S. (2016), Cosserat elasticity of negative Poisson’s ratio foam: Experiment, Smart Materials and Structures, Vol. 25, 1-8.Search in Google Scholar

15. Scarpa F., Alderson A., Ruzzene M., K. (2016), Auxetics in smart systems and structures, Smart Materials and Structures, 25(5), 1-8.10.1088/0964-1726/25/5/050301Search in Google Scholar

16. Strek T., Michalski J., Jopek H. (2019) Computational analysis of the mechanical impedance of the sandwich beam with auxetic metal foam core, Physica Status Solidi B, Vol. 256 (1), 1800423, 10.1002/pssb.201800423.Search in Google Scholar

17. Sulym H., Mikulich O., Shvabyuk V. (2018), Investigation of the dynamic stress state of foam media in Cosserat elasticity, Mechanics and Mechanical Engineering, Vol. 22, No.3, 739-750.Search in Google Scholar

18. Underhill R.S. (2017), Manufacture and characterization of auxetic foams, DRDC-RDDC-2017-R099.Search in Google Scholar

19. Zhang X., Ding H., An Li. (2014), Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles, Advances in Mechanical Engineering, 10.1155/2014/679678.Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik