1. bookVolumen 13 (2019): Heft 4 (December 2019)
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Modelling Methodology of Piston Pneumatic Air Engine Operation

Online veröffentlicht: 30 Jan 2020
Volumen & Heft: Volumen 13 (2019) - Heft 4 (December 2019)
Seitenbereich: 271 - 278
Eingereicht: 16 Dec 2019
Akzeptiert: 18 Jan 2020
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. A policy framework for climate and energy in the period from 2020 to 2030. 2014. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions.Search in Google Scholar

2. Allam S., Zakaria M. (2018), Experimental investigation of compressed air engine performance, International Journal of Engineering Inventions, 7(1), 13–20.Search in Google Scholar

3. Badr O., Probert S.D., O’Callaghan P.W. (1985), Multi-vane expanders: internal-leakage losses, Applied Energy, 20(1), 1–46.10.1016/0306-2619(85)90033-9Search in Google Scholar

4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1), 1–6.10.17531/ein.2015.1.1Search in Google Scholar

5. Borawski A. (2016), Suggested research method for testing selected tribological properties of friction components in vehicle braking systems, Acta Mechanica et Automatica, 10(3), 223–226.10.1515/ama-2016-0034Search in Google Scholar

6. Borawski A. (2019), Common methods in analysing the tribological properties of brake pads and discs – a review, Acta Mechanica et Automatica, 13(3), 189–199.10.2478/ama-2019-0025Search in Google Scholar

7. Brejaud P., Higelin P., Charlet A. et al. (2011), Convective Heat Transfer in a Pneumatic Hybrid Engine, Oil & Gas Science and Technology, 66(6), 1035–1051.10.2516/ogst/2011121Search in Google Scholar

8. Commission Regulation (EU) 2017/1154 of 7 June 2017 amending Regulation (EU) 2017/1151 supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008 and Directive 2007/46/EC of the European Parliament and of the Council as regards real-driving emissions from light passenger and commercial vehicles (Euro 6), Official Journal of the European Union, L175, 7.7.2017, page 708.Search in Google Scholar

9. Czarnigowski J. (2012), Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu, Politechnika Lubelska, Lublin.Search in Google Scholar

10. Dimitrova Z., Marechal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, 151, 168–177.10.1016/j.apenergy.2015.03.057Search in Google Scholar

11. Duk M., Czarnigowski J. (2012), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10b), 59–63.Search in Google Scholar

12. Dvorak L., Fojtasek K., Rehacek V. (2017), Calculations of parameters and mathematical model of rotary air motor, EPJ Web of Conferences, 143, 02018, 4p.10.1051/epjconf/201714302018Search in Google Scholar

13. Fang Y.D., Lu Y.J., Yu X.L., Roskilly A.P. (2018), Experimental study of a pneumatic engine with heat supply to improve the overall performance, Applied Thermal Engineering, 134, 78–85.10.1016/j.applthermaleng.2018.01.113Search in Google Scholar

14. Fox J.T., Yang K., Hunsicker R. (2019), Diesel Particulate Filter Cleaning Effectiveness: Estimated Ash Loading, Quantified Particulate Removal, and Post-cleaning Filter Pressure Drop. Emission Control Science and Technology, 1–11 (on-line).10.1007/s40825-019-00149-8Search in Google Scholar

15. Grigor’ev M.A., Naumovich N.I., Belousov E.V. (2015), A traction electric drive for electric cars, Russian Electrical Engineering, 86(12), 731–734.10.3103/S1068371215120111Search in Google Scholar

16. Heywood B.H. (1988), Internal combustion engine fundamentals, McGraw-Hill Series in Mechanical Engineering, New York, USA.Search in Google Scholar

17. http://wltpfacts.eu/ [online cit.: 2019.11.10].Search in Google Scholar

18. http://www.engineair.com.au/ [online cit.: 2019.11.10].Search in Google Scholar

19. http://www.jawa-50.cz/clanek/jawa-23-mustang-technicke-udaje.html [online cit.: 2019.11.10].Search in Google Scholar

20. https://www.mdi.lu/ [online cit.: 2019-03.01].Search in Google Scholar

21. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil & Gas Science and Technology, 59(6),571–579.10.2516/ogst:2004041Search in Google Scholar

22. Kalekin V.S., Kalekin D.V., A. N. Nefedchenko A.N. (2014), A Mathematical Model of a Piston Pneumatic Engine with Self-Acting air Distribution, Chemical and Petroleum Engineering, 50(1-2), 91–98.10.1007/s10556-014-9861-6Search in Google Scholar

23. Kaminski Z. (2013), Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems, International Journal of Heavy Vehicle System, 20(4), 289–311.10.1504/IJHVS.2013.056802Search in Google Scholar

24. Kaminski Z. (2014), Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(4), 637–643.Search in Google Scholar

25. Librovich B.V., Nowakowski A.F. (2004), Analysis, design, and modeling of a rotary vane engine (RVE), Journal of Mechanical Design, 126(4), 711–720.10.1115/1.1711823Search in Google Scholar

26. Michael M., Voser C., Onder C et al. (2012), Design methodology of camshaft driven charge valves for pneumatic engine starts, IFAC Proceedings, 45(30), 33–40.10.3182/20121023-3-FR-4025.00019Search in Google Scholar

27. Mieczkowski G. (2017), The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry, Journal of Theoretical and Applied Mechanics, 55(1), 69–86.10.15632/jtam-pl.55.1.69Search in Google Scholar

28. Mieczkowski G. (2018), Optimization and prediction of durability and utility features of three-layer piezoelectric transducers, Mechanika, 24(3), 335–342.10.5755/j01.mech.24.3.17953Search in Google Scholar

29. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21(2), 301–310.10.17531/ein.2019.2.15Search in Google Scholar

30. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, 20, 222, 14p.10.3390/s20010222698278631906057Search in Google Scholar

31. Mikulski M., Balakrishnan P.R., Doosje E. et al. (2018), Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine, SAE Technical Papers, 2018-01-0254, 14p.10.4271/2018-01-0254Search in Google Scholar

32. Mikulski M., Wierzbicki S., Pietak A. (2015), Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine, Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 36 (2), 225–238.10.1515/cpe-2015-0015Search in Google Scholar

33. Mitianiec W. (2008), Pneumatic two-stroke engine as an alternative power source, Journal of KONES Powertrain and Transport, 15(3), 357–366.Search in Google Scholar

34. Onishi S., Hong J.S., Do J.S. et al. (1979), Active thermo-atmosphere combustion (A.T.A.C.) - A new combustion process for internal combustion engines, SAE Paper 790501.Search in Google Scholar

35. Pulawski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6), 501–506;10.5755/j01.mech.21.6.11147Search in Google Scholar

36. Raslavicius L., Kersys A. Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68(1), 380–396.10.1016/j.rser.2016.09.109Search in Google Scholar

37. Raslavicius L., Kersys A., Mockus S. et al. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable & Sustainable Energy Reviews, 32, 513–525.10.1016/j.rser.2014.01.052Search in Google Scholar

38. Resitoglu I.A., Altinisik K., Keskin A. et al. (2020), The effects of Fe2O3 based DOC and SCR catalyst on the exhaust emissions of diesel engines, Fuel, 262, 116501.10.1016/j.fuel.2019.116501Search in Google Scholar

39. Semenchukova V., Grishin Y., Malastowski N. (2018), Mathematical modeling of a piston engine pneumatic start, International Russian Automation Conference (RusAutoCon), 1–4.10.1109/RUSAUTOCON.2018.8501794Search in Google Scholar

40. Senthil Kumar J., Ramesh Bapu B.R., Sivasaravanan S. et al. (2019), Experimental studies on emission reduction in DI Diesel engine by using nano catalyst coated catalytic converter, International Journal of Ambient Energy, 1–17 (on-line).10.1080/01430750.2019.1694584Search in Google Scholar

41. Simon M. (2017), Pneumatic vehicle, research and design, Procedia Engineering, 181, 200–205.10.1016/j.proeng.2017.02.370Search in Google Scholar

42. Szpica D. (2016), The influence of selected adjustment parameters on the operation of LPG vapor phase pulse injectors, Journal of Natural Gas Science and Engineering, 34, 1127–1136.10.1016/j.jngse.2016.08.014Search in Google Scholar

43. Szpica D. (2018a), Modelling of the operation of a Dual Mass Flywheel (DMF) for different engine-related distortions, Mathematical and Computer Modelling of Dynamical Systems, 24(6), 643–660.10.1080/13873954.2018.1521839Search in Google Scholar

44. Szpica D. (2018b), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport, 33(1), 186–196.10.3846/16484142.2016.1149884Search in Google Scholar

45. Szpica D. (2018c), The determination of the flow characteristics of a low-pressure vapor-phase injector with a dynamic method, Flow Measurement and Instrumentation, 62, 44–55.10.1016/j.flowmeasinst.2018.05.010Search in Google Scholar

46. Walus K.J., Wargula L., Krawiec P. et al. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery - the case study for Europe: a review, Environmental Science and Pollution Research, 25(4), 3243–3259.10.1007/s11356-017-0847-8581157029238926Search in Google Scholar

47. Wargula L., Walus K. J., Krawiec P. (2018), Small engines spark ignited (SI) for non-road mobile machinery-review, Proceedings of 22nd International Scientific Conference. Transport Means 2018, T.2, 585–591.Search in Google Scholar

48. Zwierzchowski J. (2017), Design type air engine Di Pietro, EPJ Web Conf., 143 02149.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo