1. bookVolumen 13 (2019): Heft 4 (December 2019)
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Magnetorheological Fluids Behaviour in Oscillatory Compression Squeeze: Experimental Testing and Analysis

Online veröffentlicht: 30 Jan 2020
Volumen & Heft: Volumen 13 (2019) - Heft 4 (December 2019)
Seitenbereich: 221 - 225
Eingereicht: 02 Oct 2019
Akzeptiert: 05 Dec 2019
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Chengye L., Fengyan Y., Kejun J. (2011), Design and finite element analysis of magnetic circuit for disk MRF brake, Advanced Materials Research, 181-182, 22–527.10.4028/www.scientific.net/AMR.181-182.522Search in Google Scholar

2. Farjoud A., Vahdati N., Fah Y. (2008), MR-fluid yield surface determination in disc-type MR rotary brakes, Smart Materials and Structures, 17(3), 1–8.10.1088/0964-1726/17/3/035021Search in Google Scholar

3. Farjoud A., Craft M., Burke W., Ahmadian M. (2011), Experimental investigation of MR squeeze mounts, Journal of Intelligent Material Systems and Structures, 22, 1645–1652.10.1177/1045389X11411225Search in Google Scholar

4. Guo C, Gong X, Xuan S, Zong L and Peng C. (2012), Normal forces of magnetorheological fluids under oscillatory shear, J. Magn. Magn. Mater, 324, 1218.Search in Google Scholar

Guo C., Gong X., Xuan S., Yan Q. and Ruan X. (2013), Squeeze Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field, Smart Materials and Structures, 22(4), 045020.10.1088/0964-1726/22/4/045020Search in Google Scholar

6. Gstöttenbauer N., Kainz A, Manhartsgruber B. (2008), Experimental and numerical studies of squeeze mode behaviour of magnetic fluid, Proc. IMechE Part C, J. Mechanical Engineering Science, 222(12), 2395-240710.1243/09544062JMES1129Search in Google Scholar

7. Guldbakke J. M., Hesselbach, J. (2006), Development of bearings and a damper based on magnetically controllable fluids, J. Phys., Condens. Matter, 18(38), 2959–2972.10.1088/0953-8984/18/38/S29Search in Google Scholar

8. Gołdasz J., Sapiński B. (2011), Model of a squeeze mode magnetorheological mount, Solid State Phenomena, 177, 116–124.10.4028/www.scientific.net/SSP.177.116Search in Google Scholar

9. Goncalves F.D., Carlson J.D. (2009) An alternate operation mode for MR fluids – magnetic gradient pinch, Journal of Physics, Conference Series, 149(1), 012050.10.1088/1742-6596/149/1/012050Search in Google Scholar

10. Horak W. Sapiński B., Szczęch M. (2017), Analysis of force in MR fluids during oscillatory compression squeeze, Acta Mechanica et Automatica, 11 (1), 64–68.10.1515/ama-2017-0010Search in Google Scholar

11. Horak W. (2018) Modeling of magnetorheological fluid in quasi-static squeeze flow mod, Smart Materials and Structures, 27 (6), 065022.10.1088/1361-665X/aab7c7Search in Google Scholar

12. Kubík M., Macháček O., Strecker Z., Roupec, J, Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structures, 26(4), 047002.10.1088/1361-665X/aa6066Search in Google Scholar

13. Kuzhir P., López-López M. T., Vertelov G., Pradille C., Bossis G. (2008), Oscillatory squeeze flow of suspensions of magnetic polymerized chains, J. Phys., Condens. Matter, 20204132.10.1088/0953-8984/20/20/20413221694261Search in Google Scholar

14. Laun H.M., Gabriel C., Schmidt G. (2008), Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T, Journal of Non-Newtonian Fluid Mechanic, 148(1), 47-56.10.1016/j.jnnfm.2007.04.019Search in Google Scholar

15. Liu W., Luo Y., Yang B., Lu W. (2019), Design and Mechanical Model Analysis of Magnetorheological Fluid Damper, American Journal of Mechanics and Applications, 4(1), 15-19.10.11648/j.ajma.20160401.13Search in Google Scholar

16. Mazlan S. (2007), The performance of magnetorheological fluid in squeeze mode, Smart Materials and Structures, 16(5), 1678-1682.10.1088/0964-1726/16/5/021Search in Google Scholar

17. Szczęch M., Horak W. (2018), Analysis of the magnetic field distribution in the parallel plate rheometer measuring system, Tribologia, 49(2),117-122.10.5604/01.3001.0012.6984Search in Google Scholar

18. Tao R. (2011), Super-strong magnetorheological fluids, Journal of Physics: Condensed Matter, 13(50), 979–999.10.1088/0953-8984/13/50/202Search in Google Scholar

19. Wang N., Liu X., Zhang X., (2019), Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe3O4 Addition in High-Torque Magnetorheological Brake, Journal of Nanoscience and Nanotechnology, 1, 19(5), 2633-2639.Search in Google Scholar

20. Zhang X. J., Farjud A., Ahmadian M., Guo K. H., Craft M. (2011), Dynamic Testing and Modelling of an MR Squeeze Mount, Journal of Intelligent Material Systems and Structures, 22, 1717-1728.10.1177/1045389X11424217Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo