Uneingeschränkter Zugang

Near-Surface Mass Defect in Models of Locally Heterogeneous Solid Mechanics


Zitieren

1. Aifantis E. C. (2011), On the gradient approach-relation to Eringen’s nonlocal theory, International Journal of Engineering Science, 49(12), 1367–1377.10.1016/j.ijengsci.2011.03.016Search in Google Scholar

2. Bargmann S., Klusemann B., Markmann J., Schnabel J. E., Schneider K., Soyarslan C., Wilmers J. (2018), Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science, 96, 322-384.10.1016/j.pmatsci.2018.02.003Search in Google Scholar

3. Bažant Z. P., Jirásek M. (2002), Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of Engineering Mechanics, 128(11),1119–1149.10.1061/(ASCE)0733-9399(2002)128:11(1119)Search in Google Scholar

4. Bostanabad R., Zhang Y., Li X., Kearney T., Brinson L., Apley D., Liu W., Chen W. (2018), Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Progress in Materials Science, 95, 1-41.10.1016/j.pmatsci.2018.01.005Search in Google Scholar

5. Burak Y., Nahirnyj T., Tchervinka K. (2014), Local gradient thermomechanics, Encyclopedia of Thermal Stresses, 2794–2801.10.1007/978-94-007-2739-7_833Search in Google Scholar

6. Cheng A. H-D. (2016), Poroelasticity, Vol. 27, Springer.10.1007/978-3-319-25202-5Search in Google Scholar

7. Di Paola M., Failla, G., Zingales M. (2010), The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions, International Journal of Solids and Structures, 47(18-19), 2347-2358.10.1016/j.ijsolstr.2010.02.022Search in Google Scholar

8. Dormieux L., Kondo D. (2013), Non linear homogenization approach of strength of nanoporous materials with interface effects, International Journal of Engineering Science, 71, 102–110.10.1016/j.ijengsci.2013.04.006Search in Google Scholar

9. Dormieux L., Kondo D., Ulm F.-J. (2006), Microporomechanics, John Wiley and Sons.10.1002/0470032006Search in Google Scholar

10. Drugan W.J., Willis J.R. (1996), A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, 44(4), 497–524.10.1016/0022-5096(96)00007-5Search in Google Scholar

11. Eringen A. C. (2002), Nonlocal continuum field theories. Springer.Search in Google Scholar

12. Guo N., Zhao J. (2016), 3D multiscale modeling of strain localization in granular media, Computers and Geotechnics, 80, 360-372.10.1016/j.compgeo.2016.01.020Search in Google Scholar

13. Kanit T., Forest S., Galliet I., Mounoury V., Jeulin, D. (2003), Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, 40(13-14), 3647–3679.10.1016/S0020-7683(03)00143-4Search in Google Scholar

14. Karlicic D., Murmu T., Adhikari S., McCarthy M. (2015), Non-local structural mechanics. John Wiley and Sons.10.1002/9781118572030Search in Google Scholar

15. Khodabakhshi P., Reddy J. N. (2015), A unified integro-differential nonlocal model, International Journal of Engineering Science, 95, 60-75.10.1016/j.ijengsci.2015.06.006Search in Google Scholar

16. Kwok K., Boccaccini D., Persson Å. H., Frandsen H. L. (2016). Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions, International Journal of Solids and Structures, 78, 38-46.10.1016/j.ijsolstr.2015.09.020Search in Google Scholar

17. Marotti de Sciarra F. (2009), On non-local and non-homogeneous elastic continua, International Journal of Solids and Structures, 46(3), 651–676.10.1016/j.ijsolstr.2008.09.018Search in Google Scholar

18. Matouš K., Geers M. G., Kouznetsova V. G., Gillman A. (2017), A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, 330, 192-220.10.1016/j.jcp.2016.10.070Search in Google Scholar

19. Monetto I., Drugan W. J. (2009), A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities, Journal of the Mechanics and Physics of Solids, 57(9), 1578-1595.10.1016/j.jmps.2009.05.005Search in Google Scholar

20. Nahirnyj T., Tchervinka K. (2015), Mathematical Modeling of Structural and Near-Surface Non-Homogeneities in Thermoelastic Thin Films, International Journal of Engineering Science, 91, 49–62.10.1016/j.ijengsci.2015.02.001Search in Google Scholar

21. Nahirnyj T., Tchervinka K. (2018), Fundamentals of the mechanics of locally non-homogeneous deformable solids, Lviv: Rastr-7 (in ukr).Search in Google Scholar

22. Polizzotto C. (2003), Gradient elasticity and nonstandard boundary conditions, International Journal of Solids and Structures, 40(26), 7399–7423.10.1016/j.ijsolstr.2003.06.001Search in Google Scholar

23. Polizzotto C. (2012), A gradient elasticity theory for second-grade materials and higher order inertia, International Journal of Solids and Structures, 49 (15), 2121–2137.10.1016/j.ijsolstr.2012.04.019Search in Google Scholar

24. Rezakhani R., Zhou X.W., Cusatis G. (2017), Adaptive multiscale homogenization of the lattice discrete particle model for the analysis of damage and fracture in concrete, International Journal of Solids and Structures, 2017, 125, 50-67.10.1016/j.ijsolstr.2017.07.016Search in Google Scholar

25. Saeb S., Steinmann P., Javili A. (2016), Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound, Applied Mechanics Reviews, 68(5), 050801.10.1115/1.4034024Search in Google Scholar

26. Salmi M., Auslender F., Bornert M., Fogli M. (2012), Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites, Comptes Rendus Mécanique, 340(4-5), 230-246.10.1016/j.crme.2012.02.007Search in Google Scholar

27. Silling S.A. (2000), Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces. Journal of the Mechanics and Physics of Solids, 48, 175–209.10.1016/S0022-5096(99)00029-0Search in Google Scholar

28. Sneddon I.N., Berry D.S. (1958), The Classical Theory of Elasticity. In: Flügge S. (eds) Elasticity and Plasticity / Elastizität und Plastizität. Handbuch der Physik / Encyclopedia of Physics, 3/6, Springer, Berlin, Heidelberg.10.1007/978-3-642-45887-3_1Search in Google Scholar

29. Wang Q., Liew K. (2007), Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures, Physics Letters A, 363(3), 236–242.10.1016/j.physleta.2006.10.093Search in Google Scholar

30. Wiśniewska A., Hernik S., Liber-Kneć A., Egner H. (2019), Effective properties of composite material based on total strain energy equivalence, Composites Part B: Engineering, 166, 213-220.10.1016/j.compositesb.2018.11.094Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik