Uneingeschränkter Zugang

Simulation and Analysis of a Turbulent Flow Around a Three-Dimensional Obstacle


Zitieren

1. Aliane K. (2011), Passive control of the turbulent flow over a surface mounted rectangular block obstacle and a rounded rectangular obstacle, International Review of Mechanical Engineering (IREME), 5(2), 305-314.Search in Google Scholar

2. Aliane K., Sebbane O., Hadjoui A. (2003), Dynamic study of turbomachine blade cooling models, Proceedings of the 11th International Day of Thermomics, Algiers (Algeria), 315-320.Search in Google Scholar

3. Amraoui M.A., Aliane K. (2018), Three-dimensional Analysis of Air Flow in a Flat Plate Solar Collector, Periodica Polytechnica Mechanical Engineering, 62(2), 126-135.10.3311/PPme.11255Search in Google Scholar

4. Basnet K., Constantinescu G. (2017), The structure of turbulent flow around vertical plates containing holes and attached to a channel bed, Journal of Physics of Fluids, 29, 115101.10.1063/1.5009310Search in Google Scholar

5. Becker H. Lienhart F.D. (2002), Flow around three-dimensional obstacles in boundary layers, J. Wind Eng. Ind. Aerodyn., 90, 265-279.10.1016/S0167-6105(01)00209-4Search in Google Scholar

6. Bitsuamlak G., Stathopoulos T., Bedard C. (2006), Effects of upstream two-dimensional hills on design wind loads a computational approach, Wind and Structures, 9(1), 37–58.10.12989/was.2006.9.1.037Search in Google Scholar

7. Diaz-Daniel C., Laizet S., Vassilicos J. (2017), Direct Numerical Simulations of a wall-attached cube immersed in laminar and turbulent boundary layers, International Journal of Heat and Fluid Flow (Preprint submitted).10.1016/j.ijheatfluidflow.2017.09.015Search in Google Scholar

8. Djeddi S.R., Masoudi A., Ghadimi P. (2013), Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low to Moderate Reynolds Numbers, American Journal of Applied Mathematics and Statistics, 1(1), 11-20.10.12691/ajams-1-1-3Search in Google Scholar

9. Dogan S., Yagmur S., Goktepeli I, Ozgoren M. (2017), Assessment of Turbulence Models for Flow around a Surface-Mounted Cube, International Journal of Mechanical Engineering and Robotics Research, 6(3), 237-241.10.18178/ijmerr.6.3.237-241Search in Google Scholar

10. Ennouri M., Kanfoudi H., Bel Hadj Taher A., Zgolli R. (2019), Numerical Flow Simulation and Cavitation Prediction in a Centrifugal Pump using an SST-SAS Turbulence Model, Journal of Applied Fluid Mechanics, 12(1), 25-39.10.29252/jafm.75.253.28771Search in Google Scholar

11. Filippini G., Franck G., Nigro N. (2005), Large Eddy Simulations of the flow around a square cylinder, Mecanica Computacional, XXIV A. Larreteguy (Editor), Buenos Aires, Argentina.Search in Google Scholar

12. Hadjoui A., Sebbane O., Aliane K., Azzi A. (2003), Study of the appearance of swirling zones in a flow confronted with obstacles located at the entrance of a canal, Proceedings of the 9th Congress of the French Society of Process Engineering, Saint-Nazaire, (France), 224-229.Search in Google Scholar

13. Hainesa M., Taylor I. (2018), Numerical investigation of the flow field around low rise buildings due to a downburst event using large eddy simulation, Journal of Wind Engineering & Industrial Aerodynamics, 172, 12-30.10.1016/j.jweia.2017.10.028Search in Google Scholar

14. Hunt J.C.R., Wray A. A., Moin P. (1988), Eddies, stream and convergence zones in turbulent flows, Technical report, Center of Turbulence Research.Search in Google Scholar

15. Hussein H.J., Martinuzzi R.J. (1996), Energy balance for the turbulent flow around a surface mounted cube placed in a channel, Phys. Fluids, Vol. 8, No. 3, 764-780.10.1063/1.868860Search in Google Scholar

16. Hwang J-Y, Yang K-S. (2010), Numerical study of vertical structures around a wall-mounted cubic obstacle in channel flow, Physics of Fluids, 16(7), 2382-2394.10.1063/1.1736675Search in Google Scholar

17. Jones W.P., Launder B.E. (1972), The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, 15, 301-14.10.1016/0017-9310(72)90076-2Search in Google Scholar

18. Kanfoudi H., Bellakhall G., Ennouri M., Bel Hadj Taher A., Zgolli R. (2017), Numerical Analysis of the Turbulent Flow Structure Induced by the Cavitation Shedding Using LES, Journal of Applied Fluid Mechanics, 10(3), 933–46.10.18869/acadpub.jafm.73.240.27384Search in Google Scholar

19. Krajnovi’c S., Davidson L. (2002), Large-eddy simulation of the flow around a bluff body, AIAA Journal, 40(5), 927-936.10.2514/2.1729Search in Google Scholar

20. Liakos A., Malamataris N.A. (2014), Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube, Physics of Fluids, 26(5), 053603.10.1063/1.4876176Search in Google Scholar

21. Liao B., Shan-Qun C. (2015), Experimental study of flow past obstacles by PIV, 7th International Conference on Fluid Mechanics, ICFM7, Procedia Engineering, 126, 537 – 541.10.1016/j.proeng.2015.11.300Search in Google Scholar

22. Lim H.C., Thomas T.G., Castro I. P. (2009), Flow around a cube in a turbulent boundary layer: LES and experiment, Journal of Wind Engineering and Industrial Aerodynamics, 97(2), 96–109.10.1016/j.jweia.2009.01.001Search in Google Scholar

23. Martinuzzi R., Tropea C. (1993), The flow around a surface-mounted prismatic obstacle placed in a fully developed channel flow, J. Fluids Eng., 115, 85-92.10.1115/1.2910118Search in Google Scholar

24. Merahi.I, Abidat. M, Azzi.A, Hireche.O (2002), Numerical assessment of incidence losses in an annular blade cascade, Séminaire international de Génie Mécanique, Sigma’02 ENSET, Oran.Search in Google Scholar

25. Nemdili S., Nemdili F., Azzi A. (2015), Improving cooling effecti veness by use of chamfers on the top of electronic components, Microelectronics Reliability, 55(7), 1067-1076.10.1016/j.microrel.2015.04.006Search in Google Scholar

26. Rostane B., Aliane K. (2015), Three Dimensional Simulation for Turbulent Flow Around Prismatic Obstacle with Rounded Downstream Edge Using the k-ω SST Model, International Review of Mechanical Engineering (I.RE.M.E.), 9(3), 266.277.10.15866/ireme.v9i3.5719Search in Google Scholar

27. Sari-Hassoun Z., Aliane K.. (2016), Numerical simulation of turbulent flow around obstacles with a curved upstream edge, International Journal of Scientific Research & Engineering Technology (IJSET), 196-201.Search in Google Scholar

28. Sebbane O., Hadjoui A., Aliane K., Azzi A. (2003), New method of visualization of flows with very large Reynolds number, Proceedings of the 9th Congress of the French Society of Process Engineering, Saint -Nazaire, France, 259-264.Search in Google Scholar

29. Shinde S., Johnseny E., Makiz K. (2017), Understanding the effect of cube size on the near wake characteristics in a turbulent boundary layer, 47th AIAA Fluid Dynamics Conference, Denver, Colorado.10.2514/6.2017-3640Search in Google Scholar

30. Sumner D., Rostamy N., Bergstrom D., Bugg J. (2015), Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder, International Journal of Heat and Fluid Flow, 56, 290-304.10.1016/j.ijheatfluidflow.2015.08.005Search in Google Scholar

31. Sumner D., Rostamy N., Bergstrom D., Bugg J.D. (2017), Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism, International Journal of Heat and Fluid Flow, 65, 1-20.10.1016/j.ijheatfluidflow.2017.02.004Search in Google Scholar

32. Vinuesa R., Schlatter P., Malm J., Mavriplis C., Henningson, D.S. (2015), Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions, Journal of Turbulence, 16, 555-587.10.1080/14685248.2014.989232Search in Google Scholar

33. Yakhot A., Liu H., Nikitin N. (2006), Turbulent flow around a wall-mounted cube: A direct numerical simulation, International Journal of Heat and Fluid Flow, 27(6), 994-1009.10.1016/j.ijheatfluidflow.2006.02.026Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik