Uneingeschränkter Zugang

Non-Linear Analysis of Air Pressure Fluctuations During Bubble Departure Synchronisation


Zitieren

1. Dzienis P., Mosdorf R. (2014), Stability of periodic bubble departures at a low frequency, Chemical Engineering Science,109, 171-182.10.1016/j.ces.2014.02.001Search in Google Scholar

2. Femat R., Ramirez J.A., Soria A. (1998), Chaotic flow structure in a vertical bubble column, Physics Letters A,248 (1), 67–79.10.1016/S0375-9601(98)00506-4Search in Google Scholar

3. Grassberger P., and Procaccia I. (1983), Measuring the strangeness of strange attractors, Physica - D,9, 189–208.10.1016/0167-2789(83)90298-1Search in Google Scholar

4. Kazakis N.A., Mouza A.A., Paras S.V. (2008), Coalescence during bubble formation at two neighbouring pores: an experimental study in microscopic scale, Chemical Engineering Science,63, 5160–517810.1016/j.ces.2008.07.006Search in Google Scholar

5. Lavensona D.M., Kelkara A.V., Daniel A. B., Mohammad S.A., Koubab G., Aicheleb C.P. (2016), Gas evolution rates – A critical uncertainty in challenged gas-liquid separations, Journal of Petroleum Science and Engineering, 147, 816-82810.1016/j.petrol.2016.10.005Search in Google Scholar

6. Legendre D., Magnaudet J., Mougin G. (2003), Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid, Journal of Fluid Mechanics,497, 133–166.10.1017/S0022112003006463Search in Google Scholar

7. Marwan N.(2019), Cross Recurrence Plot Toolbox for Matlab, Ver. 5.15, Release 28.10, http://tocsy.pik-potsdam.de.Search in Google Scholar

8. Marwan N., Romano M. C., Thiel M., Kurths J. (2007),Recurrence Plots for the Analysis of Complex Systems, Physics Reports, 438, 237 – 329.10.1016/j.physrep.2006.11.001Search in Google Scholar

9. Mosdorf R., Dzienis P., Litak G. (2017), The loss of synchronization between air pressure fluctuations and liquid flow inside the nozzle during the chaotic bubble departures, Meccanica, 52, 2641–265410.1007/s11012-016-0597-6Search in Google Scholar

10. Mosdorf R., Wyszkowski T. (2011), Experimental investigations of deterministic chaos appearance in bubbling flow, International Journal of Heat and Mass Transfer, 54, 5060–5069.10.1016/j.ijheatmasstransfer.2011.07.023Search in Google Scholar

11. Mosdorf R., Wyszkowski T. (2013), Self-organising structure of bubbles departures, International Journal of Heat and Mass Transfer, 61, 277–286.10.1016/j.ijheatmasstransfer.2013.02.008Search in Google Scholar

12. Sanada T., Sato A., Shirota M.T., Watanabe M. (2009), Motion and coalescence of a pair of bubbles rising side by side, Chemical Engineering Science, 64, 2659-2671.10.1016/j.ces.2009.02.042Search in Google Scholar

13. Schuster H.G. (1993), Deterministic Chaos. An Introduction, PWN, Warszawa (in Polish).10.1007/978-3-642-95650-8_2Search in Google Scholar

14. Snabre P., Magnifotcham F. (1997), Formation and rise of a bubble stream in viscous liquid, European Physical Journal B, 4, 369-377.10.1007/s100510050392Search in Google Scholar

15. Torrence C., Compo G. P. (1998), A practical guide to wavelet analysis, Bulletin of the American Meteorological Society,79, 61-78.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2Search in Google Scholar

16. Vazquez A., Leifer I., Sanchez R.M. (2010), Consideration of the dynamic forces during bubble growth in a capillary tube, Chemical Engineering Science, 65, 4046–4054.10.1016/j.ces.2010.03.041Search in Google Scholar

17. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. (1985), Determining Lyapunov Exponent from a Time series, Physica-D, 16, 285–317.10.1016/0167-2789(85)90011-9Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik