Uneingeschränkter Zugang

Numerical Solution of Natural Convective Heat Transfer Under Magnetic Field Effect


Zitieren

1. Amber I., O’Donovan T. S. (2017), A numerical simulation of heat transfer in an enclosure with a nonlinear heat source, Numerical Heat Transfer, Part A: Applications, 71(11), 1081–1093.10.1080/10407782.2017.1330093Search in Google Scholar

2. Batchelor G. K. (1956), Steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech., 1, 177–190.10.1017/S0022112056000123Search in Google Scholar

3. Benjamin A. S., Denny V. E. (1979), On the convergence of numerical solutions for 2-D flows in a cavity at large Re, J. Comp. Physics, 33, 340–358.10.1016/0021-9991(79)90160-8Search in Google Scholar

4. De Vahl Davis G. (1983), Natural convection of air in a square cavity: A bench mark numerical solution, Int. J. for Num. Meth. in Fluids, 3, 249–264.10.1002/fld.1650030305Search in Google Scholar

5. Demir H. (2005), Numerical modeling of viscoelastic cavity driven flow using finite difference simulations, Appl. Math. and Comp., 166, 64–83.10.1016/j.amc.2004.04.107Search in Google Scholar

6. Elder J. W. (1965), Laminar free convection in a vertical slot, J. Fluid Mech., 23, 77–98.10.1017/S0022112065001246Search in Google Scholar

7. Emery A., Chi H., Dale J. (1971), Free convection through vertical plane layers of non-Newtonian power law fluids, ASME J. Heat Transfer, 93, 164–171.10.1115/1.3449778Search in Google Scholar

8. Erturk E., Corke T. C. (2001), Boundary layer leading-edge receptivity to sound at incidence angles, Journal of Fluid Mechanics, 444, 383–407.10.1017/S0022112001005456Search in Google Scholar

9. Erturk E., Corke T. C., Gökçöl C. (2005), Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, J. Numer. Meth. Fluids, 48, 747–774.10.1002/fld.953Search in Google Scholar

10. Erturk E., Haddad O. M., Corke T. C. (2004), Laminar incompressible flow past parabolic bodies at angles of attack, AIAA Journal, 42, 2254–2265.10.2514/1.4032Search in Google Scholar

11. Gebhart B., Jaluria Y., Mahajan R. L., Sammakia B. (1988), Buoyancy induced flows and transport, Washington: Hemisphere.10.1115/1.3226555Search in Google Scholar

12. Ghia U., Ghia K. N., Shin C. T. (1982), High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comp. Physics, 48, 387–411.10.1016/0021-9991(82)90058-4Search in Google Scholar

13. Gunzburger M. D., Meir A. J., Peterson J. S. (1991), On the existence, uniqueness and finite element approximation of solutions of the equations of stationary, incompressible magnetohydro-dynamics, Math. Comput., 56, 523–563.10.1090/S0025-5718-1991-1066834-0Search in Google Scholar

14. Hasler U., Schneebeli A., Schötzau D. (2004), Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Appl. Numer. Math., 51, 19–45.10.1016/j.apnum.2004.02.005Search in Google Scholar

15. He Y. N., Li, J. (2009), Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 1351–1359.10.1016/j.cma.2008.12.001Search in Google Scholar

16. Hou S., Zou Q., Chen S., Doolen G., Cogley A.C. (1995), Simulation of cavity flow by the Lattice Boltzmann method, J. Comp. Physics, 118, 329–347.10.1006/jcph.1995.1103Search in Google Scholar

17. Khader M. M. (2016), Shifted Legendre Collocation method for the flow and heat transfer due to a stretching sheet embedded in a porous medium with variable thickness, variable thermal conductivity and thermal radiation, Mediterr. J. Math., 13, 2319–2336.10.1007/s00009-015-0594-3Search in Google Scholar

18. Liao S. J., Zhu J. M. (1996), A short note on higher-order stream function-vorticity formulation of 2-D steady state Navier-Stokes equations, Int. J. Numer. Methods Fluids, 22, 1–9.10.1002/(SICI)1097-0363(19960115)22:1<1::AID-FLD314>3.0.CO;2-5Search in Google Scholar

19. Rayleigh R. (1916), On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside, Phil. Mag., Ser.6, 32, 529–546.10.1080/14786441608635602Search in Google Scholar

20. Rubin S. G., Khosla P. K. (1981), N-S calculations with a coupled strongly implicit method, Computers and Fluids, 9, 163–180.10.1016/0045-7930(81)90023-2Search in Google Scholar

21. Rudraiah N., Barron R. M., Venkatachalappa M., Subbaraya C. K. (1995), Effect of a magnetic field on free convection in a rectangular enclosure, Int. J. Engng Sci., 33, 1075–1084.10.1016/0020-7225(94)00120-9Search in Google Scholar

22. Salah N. B., Soulaimani A., Habashi W. G. (2001), A finite element method for magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 190, 5867–5892.10.1016/S0045-7825(01)00196-7Search in Google Scholar

23. Schreiber R., Keller H. B. (1983), Driven cavity flows by efficient numerical techniques, J. Comp. Physics, 49, 310–333.10.1016/0021-9991(83)90129-8Search in Google Scholar

24. Shenoy A. V. (1988), Natural convection heat transfer to viscoelastic fluids, Houston: Gulf.Search in Google Scholar

25. Siddheshwar P. G., Ramachandramurthy V., Uma D. (2011), Rayleigh-Benard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects, Int. J. Engng Sci., 49, 1078–1094.10.1016/j.ijengsci.2011.05.020Search in Google Scholar

26. Siginer D. A., Valenzuela-Rendon A. (1994), Natural convection of viscoelastic liquids, Proc. ASME Fluids Engineering Division Summer Meeting, Symposium, ASME FED, 179, 31–41.Search in Google Scholar

27. Smith G. D. (1978), Numerical solution of partial differential equations by finite difference methods, Oxford University Pres.Search in Google Scholar

28. Tennehill J. C., Anderson D. A., Pletcher R. H. (1997), Computational fluid mechanics and heat transfer, Taylor& Francis.Search in Google Scholar

29. Venkatachalappa M., Younghae D., Sankar M. (2011), Effect of magnetic field on the heat and mass transfer in a vertical annulus, Int. J. Engng Sci., 49, 262–278.10.1016/j.ijengsci.2010.12.002Search in Google Scholar

30. Wilkes J. O., Churehill S. W. (1966), The finite-difference computation of natural convection in a rectangular enclosure, AICHEJ, 12, 161–166.10.1002/aic.690120129Search in Google Scholar

31. Xu H., He Y. N. (2013), Some iterative finite element methods for steady Navier-Stokes equations with different viscosities, J. Comput. Phys., 232, 136–152.10.1016/j.jcp.2012.07.020Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik