Uneingeschränkter Zugang

Position/Force Control of Manipulator in Contact with Flexible Environment

   | 18. Apr. 2019

Zitieren

1. Barata J.C.A., Hussein M.S. (2012), The Moore–Penrose pseudoinverse: A tutorial review of the theory, Brazilian Journal of Physics, 42(1-2), 146–165.10.1007/s13538-011-0052-zSearch in Google Scholar

2. Birglen L., Schlicht T. (2018), A statistical review of industrial robotic grippers, Robotics and Computer-Integrated Manufacturing, 49, 88–97.10.1016/j.rcim.2017.05.007Search in Google Scholar

3. Burghardt A., Kurc K., Szybicki D., Muszyńska M., Nawrocki J. (2017a), Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts, Tehnicki Vjesnik-Technical Gazette, 24(2), 349–353.10.17559/TV-20160820142224Search in Google Scholar

4. Burghardt A., Szybicki D., Kurc K., Muszyńska M., Mucha J. (2017b), Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control, Strength Mater, 49(4), 594–604.10.1007/s11223-017-9903-3Search in Google Scholar

5. Canudas de Wit C.A., Siciliano B., Bastin G. (Eds.) (1996), Theory of robot control, New York, Springer.10.1007/978-1-4471-1501-4Search in Google Scholar

6. Capisani L. M., Ferrara A. (2012), Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments, IEEE Transactions on Industrial Electronics, 59(8), 3189–3198.10.1109/TIE.2011.2160510Search in Google Scholar

7. Denkena B., Bergmann B., Lepper T. (2017), Design and optimization of a machining robot, Procedia Manufacturing, 14, 89–96.10.1016/j.promfg.2017.11.010Search in Google Scholar

8. Duan J., Gan Y., Chen M., Dai X. (2018), Adaptive variable impedance control for dynamic contact force tracking in uncertain environment, Robotics and Autonomous Systems, 102, 54–65.10.1016/j.robot.2018.01.009Search in Google Scholar

9. Galushkin A. I. (2007). Neural networks theory, Springer Science & Business Media.Search in Google Scholar

10. Gierlak P. (2012), Hybrid Position/Force Control of the SCORBOT-ER 4pc Manipulator with Neural Compensation of Nonlinearities, in: Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science, 7268, 433–441, Springer, Berlin, Heidelberg.10.1007/978-3-642-29350-4_52Search in Google Scholar

11. Gierlak P. (2014), Hybrid position/force control in robotised machining, Solid State Phenomena, 210, 192–199.10.4028/www.scientific.net/SSP.210.192Search in Google Scholar

12. Gierlak P. (2018), Combined strategy for control of interaction force between manipulator and flexible environment, Journal of Control Engineering and Applied Informatics, 20(2), 64–75.Search in Google Scholar

13. Gierlak P., Szuster M. (2017), Adaptive position/force control for robot manipulator in contact with a flexible environment, Robotics and Autonomous Systems, 95, 80–101.10.1016/j.robot.2017.05.015Search in Google Scholar

14. Gracia L., Solanes J.E., Muñoz-Benavent P., Miro J.V., Perez-Vidal C., Tornero J. (2018), Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback, Mechatronics, 52, 102–118.10.1016/j.mechatronics.2018.04.008Search in Google Scholar

15. Hashemi S.M., Gürcüoğlu U., Werner H. (2013), Interaction control of an industrial manipulator using LPV techniques, Mechatronics, 23(6), 689–699.10.1016/j.mechatronics.2013.07.002Search in Google Scholar

16. Hendzel Z., Burghardt A., Gierlak P., Szuster M. (2014), Conventional and fuzzy force control in robotised machining, Solid State Phenomena, 210, 178–185.10.4028/www.scientific.net/SSP.210.178Search in Google Scholar

17. Hertz J., Krogh A., Palmer R.G. (1991), Introduction to the theory of neural computation, Boston, Addison-Wesley Longman Publishing Co.10.1063/1.2810360Search in Google Scholar

18. Iglesias I., Sebastián M.A., Are, J.E. (2015), Overview of the state of robotic machining: Current situation and future potential, Procedia engineering, 132, 911–917.10.1016/j.proeng.2015.12.577Search in Google Scholar

19. Jafari A., Ryu J.H. (2016), Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment, Journal of the Franklin Institute, 353(4), 857–875.10.1016/j.jfranklin.2015.12.010Search in Google Scholar

20. Kumar N., Panwar V., Sukavanam N., Sharma S.P., Borm J.-H. (2011), Neural network based hybrid force/position control for robot manipulators, International Journal of Precision Engineering and Manufacturing, 12(3), 419–426.10.1007/s12541-011-0054-3Search in Google Scholar

21. Lewis F.L., Liu K., Yesildirek A. (1995), Neural Net Robot Controller with Guaranteed Tracking Performance, IEEE Transactions on Neural Networks, 6(3), 701–715.10.1109/72.37797518263355Search in Google Scholar

22. Lotz M., Bruhm H., Czinki A. (2014), An new force control strategy improving the force control capabilities of standard industrial robots, Journal of Mechanics Engineering and Automation, Vol. 4, 276–283.Search in Google Scholar

23. Mendes N., Neto P. (2015), Indirect adaptive fuzzy control for industrial robots: a solution for contact applications, Expert Systems with Applications, 4 (22), 8929–8935.10.1016/j.eswa.2015.07.047Search in Google Scholar

24. Narendra K., Annaswamy A.M. (1987), A new adaptive law for robust adaptation without persistent excitation, IEEE Transactions on Automatic Control, 32(2), 134–145.10.1109/TAC.1987.1104543Search in Google Scholar

25. Pao Y.-H., Park G.-H., Sobajic D.J. (1994), Learning and generalization characteristics of the random vector functional-link net, Neurocomputing, 6(2), 163–180.10.1016/0925-2312(94)90053-1Search in Google Scholar

26. Pliego-Jiménez J., Arteaga-Pérez M.A. (2015), Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters, European Journal of Control, 22, 1–12.10.1016/j.ejcon.2015.01.003Search in Google Scholar

27. Polycarpou M.M., Ioannu P.A. (1991), Identification and control using neural network models: design and stability analysis, California, University of Southern California.Search in Google Scholar

28. Ravandi A. K., Khanmirza E., Daneshjou K. (2018), Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Applied Soft Computing, 70, 864–874.10.1016/j.asoc.2018.05.048Search in Google Scholar

29. Tian F., Lv C., Li Z., Liu G. (2016), Modeling and control of robotic automatic polishing for curved surfaces, CIRP Journal of Manufacturing Science and Technology, 14, 55–64.10.1016/j.cirpj.2016.05.010Search in Google Scholar

30. Vukobratovič M., Ekalo Y., Rodič A. (2002), How to Apply Hybrid Position/Force Control to Robots Interacting with Dynamic Environment, In: Bianchi G., Guinot J.-C., Rzymkowski C. (Eds.) Romansy, 14, 249–258, Vienna.10.1007/978-3-7091-2552-6_27Search in Google Scholar

31. Zhu D., Luo S., Yang L., Chen W., Yan S., Ding H. (2015), On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys, Tribology International, 90, 55–59.10.1016/j.triboint.2015.04.004Search in Google Scholar

32. Żylski W., Gierlak P. (2010), Verification of Multilayer Neural-Net Controller in Manipulator Tracking Control, Solid State Phenomena, 164, 99–104.10.4028/www.scientific.net/SSP.164.99Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik