Uneingeschränkter Zugang

EXPERIMENTAL SETUP FOR TESTING ROTARY MR DAMPERS WITH ENERGY HARVESTING CAPABILITY


Zitieren

1. An J., Kwon D. S. (2003), Modeling of a Magnetorheological Actuator Including Magnetic Hysteresis, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.4352&rep=rep1&type=pdf.Search in Google Scholar

2. Li Z., Zhuo L., Luhrs G., Lin L., Qin Y. (2013), Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling and Road Tests. IEEE Transactions on Vehicular Technology, Vol. 62, no.3, 1065−1074.Search in Google Scholar

3. Młot A. (2007), Structural pulsation dampening methods of the electromechanical torque in a brushless DC motor with permanent magnets, PhD thesis. Opole University of Technology, Faculty of electrical engineering, Automatic control and informatics. (in Polish)Search in Google Scholar

4. Sapiński B., Krupa S. (2011), Rotary transducer of mechanical energy into electrical energy, Application for the patent no. P−395 787. (in Polish)Search in Google Scholar

5. Sapiński B. (2011), Experimental study of self-powered and sensing MR damper-based vibration control system. Smart Materials and Structures, Vol. 20, 105012.10.1088/0964-1726/20/10/105007Search in Google Scholar

6. Sapiński B., Bydoń S. (2002), Application of Magnetorheological Fluid Brake to Shaft Position Control in Induction Motor, Pneumatyka, Vol.3, no.34, 27-29. (in Polish)Search in Google Scholar

7. Sapiński B., Szydło Z. (2013), Magnetorheological damper for torsional vibration with electromechanical rotary transducer. Application for the patent no. P‒403 371 (in Polish)Search in Google Scholar

8. Vavreck A. N., Ho Ch. H. (2005), Characterization of a commercial magnetorheological brake/damper in oscillatory motion, Smart Structures and Materials: Damping and Isolation, 256−267.10.1117/12.599156Search in Google Scholar

9. Wang Z. H., Chen, Z. Q. and Spencer, B. F. (2009), Self-powered and sensing control system based on MR damper, presentation and application, Proc. of SPIE on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 7292, 729240.Search in Google Scholar

10. Wang D. H., Bai X. X.(2013), A magnetorheological damper with an integrated self-powered displacement sensor. Smart Materials and Structures, Vol. 22, 075001.10.1088/0964-1726/22/7/075001Search in Google Scholar

11. Wang D. H., Bai X. X., Liao W. H.(2010), An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing. Smart Materials and Structures, Vol.19, 105008.10.1088/0964-1726/19/10/105008Search in Google Scholar

12. Zhu S. Y., Shen W. A., Xu Y. L., Lee W. C.(2012), Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing, Engineering Structures, Vol. 34, 198−212.Search in Google Scholar

13. http://www.baldor.com/Search in Google Scholar

14. http://openi.nlm.nih.gov/detailedresult.php?img=3251984_sensors1111305f22&query=the&fields=all&favor=none&it=none&sub=none&uniq=&sp=none&req=4&simCollection=3142198_1477-7525-9-44-1&npos=86&prt=3Search in Google Scholar

15. http://www.ktr.com/de/home.htmSearch in Google Scholar

16. http://www.ni.com/pdf/manuals/374068f.pdfSearch in Google Scholar

17. http://www.ni.com/pdf/manuals/374188d.pdfSearch in Google Scholar

18. http://www.ni.com/pdf/manuals/374068f.pdf Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik