Uneingeschränkter Zugang

DEPENDENCE OF CREEP FAILURE PROBABILITY ON THE SIZE OF METALLIC SPECIMENS

   | 22. Jan. 2014

Zitieren

1. Bažant Z.P. (1984), Size Effect in Blunt Fracture: Concrete, Rock, Metal, J. Eng. Mech., 110, 518-535.Search in Google Scholar

2. Bažant Z.P. (1999), Size effect on structural strength: a review, Archive of Applied Mechanics, 69, 703-725.10.1007/s004190050252Search in Google Scholar

3. Bodnar, A., Chrzanowski, M. (2002), On creep rupture of rectangular plates, ZAMM, 82, 201-205.10.1002/1521-4001(200203)82:3<201::AID-ZAMM201>3.0.CO;2-GSearch in Google Scholar

4. Carpinteri A., Spagnoli A. (2004), A fractal analysis of size effect on fatigue crack growth, Int. J. of Fatigue, 26, 125-133.10.1016/S0142-1123(03)00142-7Search in Google Scholar

5. Carpinteri A., Spagnoli A., Vantadori S. (2002), An approach to size effect in fatigue of metals using fractal theories, Fatigue Fract.Engng. Mater. Struct., 25, 619-627.Search in Google Scholar

6. Carpinteri A., Spagnoli A., Vantadori S. (2009), Size effect in S-N curves: A fractal approach to finite-life fatigue strength, Int. J. of Fatigue, 31, 927-933.10.1016/j.ijfatigue.2008.10.001Search in Google Scholar

7. Carpinteri A., Spagnoli A., Vantadori S. (2010), A multifractal analysis of fatigue crack growth and its application to concrete, Eng.Fract. Mech., 77, 974-984.Search in Google Scholar

8. Chrzanowski M. (1972), On the Possibility of Describing the Complete Process of Metallic Creep, Bull. Ac. Pol. Sc. Ser. Sc.Techn., XX, 75-81.Search in Google Scholar

9. Farris J.P., Lee J. D., Harlow D. G., Delph T.J. (1990), On the scatter in creep rupture times, Metallurgical and Materials Transactions, 21A, 345-352.10.1007/BF02782414Search in Google Scholar

10. Feltham P., Meakin J.D. (1959), Creep in Face-Centred Cubic Metals with Special Reference to Copper, Acta Metallurgica, 7, 614-627.10.1016/0001-6160(59)90131-2Search in Google Scholar

11. Garofalo F., Whitmore R.W., Domis W.F., Gemmingen F. (1961), Creep and creep-rupture relationships in an austenitic stainless steel, Trans. Metall. Soc. AIME, 221, 310-319.Search in Google Scholar

12. Hayhurst D.R. (1974), The effects of test variables on scatter in high-temperature tensile creep-rupture data, International Journal of Mechanical Sciences, 16, 829-841.10.1016/0020-7403(74)90041-1Search in Google Scholar

13. Kocańda S., Szala J. (1991), Podstawy obliczeń zmęczeniowych, PWN, Warszawa (in Polish).Search in Google Scholar

14. Monkman F.C., Grant N.J. (1956), An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Test, Proc. ASTM, 56, 593-620.Search in Google Scholar

15. Nowak K. (2011), Uncertainty of lifetime for CAFE creep damage model, Computer Methods in Materials Science, 11, 315-323.Search in Google Scholar

16. Raabe D. (2002), Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Ann. Review of Materials Research, 32, 53-76.10.1146/annurev.matsci.32.090601.152855Search in Google Scholar

17. Weibull W. (1939), The Phenomenon of Rupture in Solids, Proceedings of Royal Swedish Institute for Engineering Research, 153, 5-55.Search in Google Scholar

18. Yatomi M., Nikbin K.M., O'Dowd N.P. (2003), Creep crack growth prediction using a damage based approach, International Journal of Pressure Vessels and Piping, 80, 573-583.10.1016/S0308-0161(03)00110-8Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik