Zitieren

Achor S., Aravis C., Heaney N., Odion E., Lin C.: Response of organic acid-mobilized heavy metals in soils to biochar application. Geoderma, 378, 114628 (2020) AchorS. AravisC. HeaneyN. OdionE. LinC. Response of organic acid-mobilized heavy metals in soils to biochar application Geoderma 378 114628 2020 10.1016/j.geoderma.2020.114628 Search in Google Scholar

Ahile U.J., Wuana R.A., Itodo A.U., Sha’Ato R., Dantas R.F.: Stability of iron chelates during photo-Fenton process: The role of pH, hydroxyl radical attack and temperature. J. Water Process. Eng. 36, 101320 (2020) AhileU.J. WuanaR.A. ItodoA.U. Sha’AtoR. DantasR.F. Stability of iron chelates during photo-Fenton process: The role of pH, hydroxyl radical attack and temperature J. Water Process. Eng. 36 101320 2020 10.1016/j.jwpe.2020.101320 Search in Google Scholar

Amiri F., Mousavi S.M., Yaghmaei S.: Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Sep. Purif. Technol. 80, 566–576 (2011) AmiriF. MousaviS.M. YaghmaeiS. Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum Sep. Purif. Technol. 80 566 576 2011 10.1016/j.seppur.2011.06.012 Search in Google Scholar

Amiri F., Mousavi S.M., Yaghmaei S., Barati M.: Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochem. Eng. J. 67, 208–217 (2012) AmiriF. MousaviS.M. YaghmaeiS. BaratiM. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions Biochem. Eng. J. 67 208 217 2012 10.1016/j.bej.2012.06.011 Search in Google Scholar

Amiri F., Yaghmaei S., Mousavi S.M.: Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour. Technol. 102, 1567–1573 (2011) AmiriF. YaghmaeiS. MousaviS.M. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum Bioresour. Technol. 102 1567 1573 2011 10.1016/j.biortech.2010.08.08720863693 Search in Google Scholar

Anangono-Lara C.A.: Efficiency of use of organic acids in shrimp (In Spanish). Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales de la Universidad de Guayaquil, Ecuador, 28.02.2014, http://www.dspace.espol.edu.ec/handle/123456789/25104 (10.05.2020) Anangono-LaraC.A. Efficiency of use of organic acids in shrimp (In Spanish) Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales de la Universidad de Guayaquil Ecuador 28 02 2014 http://www.dspace.espol.edu.ec/handle/123456789/25104 (10.05.2020) Search in Google Scholar

Anjum F., Shahid M., Akcil A.: Biohydrometallurgy techniques of low-grade ores: A review on black shale. Hydrometallurgy, 117–118, 1–12 (2012) AnjumF. ShahidM. AkcilA. Biohydrometallurgy techniques of low-grade ores: A review on black shale Hydrometallurgy 117–118 1 12 2012 10.1016/j.hydromet.2012.01.007 Search in Google Scholar

Asghari I., Mousavi S.M.: Effects of key parameters in recycling of metals from petroleum refinery waste catalysts in bioleaching process. Rev. Environ. Sci. Bio. 13, 139–161 (2014). AsghariI. MousaviS.M. Effects of key parameters in recycling of metals from petroleum refinery waste catalysts in bioleaching process Rev. Environ. Sci. Bio. 13 139 161 2014 10.1007/s11157-013-9329-8 Search in Google Scholar

Ashiq A., Kulkarni J., Vithanage, M.: Hydrometallurgical recovery of metals from e-waste (in) Electronic Waste Management and Treatment Technology. Ed. M.N. Vara-Prasad, M. Vithanage, Elsevier, Amsterdam, p. 225–246 (2019) AshiqA. KulkarniJ. VithanageM. Hydrometallurgical recovery of metals from e-waste (in) Electronic Waste Management and Treatment Technology Ed. Vara-PrasadM.N. VithanageM. Elsevier Amsterdam 225 246 2019 10.1016/B978-0-12-816190-6.00010-8 Search in Google Scholar

Bahaloo-Horeh N., Mousavi S.M.: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manage. 60, 666–679 (2016) Bahaloo-HorehN. MousaviS.M. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger Waste Manage. 60 666 679 2016 10.1016/j.wasman.2016.10.03427825532 Search in Google Scholar

Bahaloo-Horeh N., Mousavi S.M., Baniasadi M.: Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J. Clean. Prod. 197, 1546–1557 (2018) Bahaloo-HorehN. MousaviS.M. BaniasadiM. Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries J. Clean. Prod. 197 1546 1557 2018 10.1016/j.jclepro.2018.06.299 Search in Google Scholar

Baldevraj R.S.M., Jagadish R.S.: Incorporation of chemical antimicrobial agents into polymeric films for food packaging (in) Multifunctional and Nanoreinforced Polymers for Food Packaging, Ed. J.M. Lagarón, Woodhead Publishing, Cambridge, 2011, p. 368–420 BaldevrajR.S.M. JagadishR.S. Incorporation of chemical antimicrobial agents into polymeric films for food packaging (in) Multifunctional and Nanoreinforced Polymers for Food Packaging Ed. LagarónJ.M. Woodhead Publishing Cambridge 2011 368 420 10.1533/9780857092786.3.368 Search in Google Scholar

Banerjee R., Mohanty A., Chakravarty S., Chakladar S., Biswas P.:A single-step process to leach out rare earth elements from coal ash using organic carboxylic acids. Hydrometallurgy, 201, 105575 (2021) BanerjeeR. MohantyA. ChakravartyS. ChakladarS. BiswasP. A single-step process to leach out rare earth elements from coal ash using organic carboxylic acids Hydrometallurgy 201 105575 2021 10.1016/j.hydromet.2021.105575 Search in Google Scholar

Beddows C.: Reference module in materials science and materials engineering, 11.06.2015, https://doi.org/10.1016/B978-0-12-803581-8.03609-2 (10.05.2020) BeddowsC. Reference module in materials science and materials engineering 11 06 2015 https://doi.org/10.1016/B978-0-12-803581-8.03609-2 (10.05.2020) 10.1016/B978-0-12-803581-8.03609-2 Search in Google Scholar

Bergelin A., Van Hees P.A.W., Wahlberg O., Lundström U.S.: The acid-base properties of high and low molecular weight organic acids in soil solutions of podzolic soils. Geoderma, 94, 223–235 (2000) BergelinA. Van HeesP.A.W. WahlbergO. LundströmU.S. The acid-base properties of high and low molecular weight organic acids in soil solutions of podzolic soils Geoderma 94 223 235 2000 10.1016/S0016-7061(99)00037-3 Search in Google Scholar

Bhargava S.K., Ram R., Pownceby M., Grocott S., Ring B., Tardio J., Jones L.: A review of acid leaching of uraninite. Hydrometallurgy, 151, 10–24 (2015) BhargavaS.K. RamR. PowncebyM. GrocottS. RingB. TardioJ. JonesL. A review of acid leaching of uraninite Hydrometallurgy 151 10 24 2015 10.1016/j.hydromet.2014.10.015 Search in Google Scholar

Biswas S., Bhattacharjee K.: Fungal assisted bioleaching process optimization and kinetics: Scenario for Ni and Co recovery from a lateritic chromite overburden. Sep. Purif. Technol. 135, 100–109 (2014) BiswasS. BhattacharjeeK. Fungal assisted bioleaching process optimization and kinetics: Scenario for Ni and Co recovery from a lateritic chromite overburden Sep. Purif. Technol. 135 100 109 2014 10.1016/j.seppur.2014.07.055 Search in Google Scholar

Cao Y., Zhang S., Zhong Q., Wang G., Xu X., Li T., Wang L., Jia Y., Li Y.: Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotox. Environ. Safe. 162, 464–473 (2018) CaoY. ZhangS. ZhongQ. WangG. XuX. LiT. WangL. JiaY. LiY. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids Ecotox. Environ. Safe. 162 464 473 2018 10.1016/j.ecoenv.2018.07.03630015193 Search in Google Scholar

Clark J.: Making carboxylic acids by oxidation of primary alcohols or aldehydes. LibreTexts, https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Carboxylic_Acids/Synthesis_of_Carboxylic_Acids/Making_Carboxylic_Acids_by_Oxidation_of_Primary_Alcohols_or_Aldehydes (10.07.2020) ClarkJ. Making carboxylic acids by oxidation of primary alcohols or aldehydes LibreTexts https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Carboxylic_Acids/Synthesis_of_Carboxylic_Acids/Making_Carboxylic_Acids_by_Oxidation_of_Primary_Alcohols_or_Aldehydes (10.07.2020) Search in Google Scholar

Das S., Naik Deshavath N., Goud V.V., Dasu V.V.: Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species. Biotechnol. Rep. 23, e00349 (2019) DasS. Naik DeshavathN. GoudV.V. DasuV.V. Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species Biotechnol. Rep. 23 e00349 2019 10.1016/j.btre.2019.e00349655138131194058 Search in Google Scholar

Deepatana A., Valix M.: Recovery of nickel and cobalt from organic acid complexes: Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. J. Hazard. Mater. 137, 925–933 (2006) DeepatanaA. ValixM. Recovery of nickel and cobalt from organic acid complexes: Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin J. Hazard. Mater. 137 925 933 2006 10.1016/j.jhazmat.2006.03.01516698178 Search in Google Scholar

Deng X., Chai L., Yang Z., Tang C., Tong H., Yuan P.: Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 233–234, 25–32 (2012) DengX. ChaiL. YangZ. TangC. TongH. YuanP. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1 J. Hazard. Mater. 233–234 25 32 2012 10.1016/j.jhazmat.2012.06.05422795840 Search in Google Scholar

Desmarais M., Pirade F., Zhang J., Rene E.R.: Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour. Technol. Rep. 11, 100526 (2020) DesmaraisM. PiradeF. ZhangJ. ReneE.R. Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives Bioresour. Technol. Rep. 11 100526 2020 10.1016/j.biteb.2020.100526 Search in Google Scholar

Dev S., Sachan A., Dehghani F., Ghosh T., Briggs B.R., Aggarwal S.: Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chem. Eng. J. 397, 124596 (2020) DevS. SachanA. DehghaniF. GhoshT. BriggsB.R. AggarwalS. Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review Chem. Eng. J. 397 124596 2020 10.1016/j.cej.2020.124596 Search in Google Scholar

Ericsson M., Löf O.: Mining’s contribution to national economies between 1996 and 2016. Miner. Econ. 32, 223–250 (2019) EricssonM. LöfO. Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. 32 223 250 2019 10.1007/s13563-019-00191-6 Search in Google Scholar

Esmaeili M., Rastegar S.O., Beigzadeh R., Gu T.: Ultrasound-assisted leaching of 0pent lithium ion batteries by natural organic acids and H2O2. Chemosphere, 254, 126670 (2020) EsmaeiliM. RastegarS.O. BeigzadehR. GuT. Ultrasound-assisted leaching of 0pent lithium ion batteries by natural organic acids and H2O2 Chemosphere 254 126670 2020 10.1016/j.chemosphere.2020.12667032325352 Search in Google Scholar

Fan B., Chen X., Zhou T., Zhang J., Xu B.: A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage. Res. 34, 474–481 (2016) FanB. ChenX. ZhouT. ZhangJ. XuB. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries Waste Manage. Res. 34 474 481 2016 10.1177/0734242X1663445426951340 Search in Google Scholar

Faraji F., Golmohammadzadeh R., Rashchi F., Alimardani N.: Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J. Environ. Manage. 217, 775–787 (2018) FarajiF. GolmohammadzadehR. RashchiF. AlimardaniN. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics J. Environ. Manage. 217 775 787 2018 10.1016/j.jenvman.2018.04.04329660703 Search in Google Scholar

Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., Wu L.: Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotox. Environ. Safe. 145, 90–102 (2017) FaridM. AliS. RizwanM. AliQ. AbbasF. BukhariS.A.H. SaeedR. WuL. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants Ecotox. Environ. Safe. 145 90 102 2017 10.1016/j.ecoenv.2017.07.01628710950 Search in Google Scholar

Fathollahzadeh H., Becker T., Eksteen J.J., Kaksonen A.H., Watkin E.L.J.: Microbial contact enhances bioleaching of rare earth elements. Bioresour. Technol. Rep. 3, 102–108 (2018) FathollahzadehH. BeckerT. EksteenJ.J. KaksonenA.H. WatkinE.L.J. Microbial contact enhances bioleaching of rare earth elements Bioresour. Technol. Rep. 3 102 108 2018 10.1016/j.biteb.2018.07.004 Search in Google Scholar

Fathollahzadeh H., Eksteen J.J., Kaksonen A.H., Watkin, E.L.J.: Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Appl. Microbiol. Biot. 103, 1043–1057 (2019) FathollahzadehH. EksteenJ.J. KaksonenA.H. WatkinE.L.J. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources Appl. Microbiol. Biot. 103 1043 1057 2019 10.1007/s00253-018-9526-z30488284 Search in Google Scholar

Fayed T.A., Gaber M., El-Nahass M.N., Diab H.A., El-Gamil M.M.: Synthesis, Structural characterization, thermal, molecular modeling and biological studies of chalcone and Cr(III), Mn(II), Cu(II), Zn(II) and Cd(II) chelates. J. Mol. Struct. 1221, 128742 (2020) FayedT.A. GaberM. El-NahassM.N. DiabH.A. El-GamilM.M. Synthesis, Structural characterization, thermal, molecular modeling and biological studies of chalcone and Cr(III), Mn(II), Cu(II), Zn(II) and Cd(II) chelates J. Mol. Struct. 1221 128742 2020 10.1016/j.molstruc.2020.128742 Search in Google Scholar

Fernandes G.W., Ribeiro S.P.: Deadly conflicts: Mining, people, and conservation. Perspect. Ecol. Conserv. 15, 141–144 (2017) FernandesG.W. RibeiroS.P. Deadly conflicts: Mining, people, and conservation Perspect. Ecol. Conserv. 15 141 144 2017 10.1016/j.pecon.2017.09.002 Search in Google Scholar

French Agency for Food, Environmental and Occupational Health Safety (ANSES): Analysis of the most appropriate risk management option (RMOA) for tributyl O-acetylcitrate (ATBC), https://echa.europa.eu/documents/10162/29c7b3b8-f40c-64b2-8b55-053117cd599f (15.11.2020) French Agency for Food, Environmental and Occupational Health Safety (ANSES) Analysis of the most appropriate risk management option (RMOA) for tributyl O-acetylcitrate (ATBC) https://echa.europa.eu/documents/10162/29c7b3b8-f40c-64b2-8b55-053117cd599f (15.11.2020) Search in Google Scholar

Fu Y., He Y., Chen H., Ye C., Lu Q., Li R., Xie W., Wang J.: Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant. J. Ind. Eng. Chem. 79, 154–162 (2019) FuY. HeY. ChenH. YeC. LuQ. LiR. XieW. WangJ. Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant J. Ind. Eng. Chem. 79 154 162 2019 10.1016/j.jiec.2019.06.023 Search in Google Scholar

Gálan-Wong L.J., Delgado-Licón E., Medrano-Trujillo H.A., Medrano-Roldán H.: Financial Biotechnology (In Spanish). Instituto Tecnológico de Durango, Durango, 2013 Gálan-WongL.J. Delgado-LicónE. Medrano-TrujilloH.A. Medrano-RoldánH. Financial Biotechnology (In Spanish) Instituto Tecnológico de Durango Durango 2013 Search in Google Scholar

Gao W., Song J., Cao H., Lin X., Zhang X., Zheng X., Zhang Y., Sun Z.: Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. J. Clean. Prod. 178, 833–845 (2018) GaoW. SongJ. CaoH. LinX. ZhangX. ZhengX. ZhangY. SunZ. Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation J. Clean. Prod. 178 833 845 2018 10.1016/j.jclepro.2018.01.040 Search in Google Scholar

Geng H., Wang F., Yan C., Tian Z., Chen H., Zhou B., Yuan R., Yao J.: Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. J. Hazard. Mater. 383, 121136 (2020) GengH. WangF. YanC. TianZ. ChenH. ZhouB. YuanR. YaoJ. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids J. Hazard. Mater. 383 121136 2020 10.1016/j.jhazmat.2019.12113631525690 Search in Google Scholar

Ghorbani Y., Montenegro M.R.: Leaching behaviour and the solution consumption of uranium-vanadium ore in alkali carbonate-bicarbonate column leaching. Hydrometallurgy, 161, 127–137 (2016) GhorbaniY. MontenegroM.R. Leaching behaviour and the solution consumption of uranium-vanadium ore in alkali carbonate-bicarbonate column leaching Hydrometallurgy 161 127 137 2016 10.1016/j.hydromet.2016.02.004 Search in Google Scholar

Gómez-Ramírez M., Rojas-Avelizapa N.G., Hernández-Gama R., Tenorio-Sánchez S.A., López-Villegas E.O.: Potential use of Bacillus genera for metals removal from spent catalysts. J. Environ. Sci. Heal. A, 54, 701–710 (2019) Gómez-RamírezM. Rojas-AvelizapaN.G. Hernández-GamaR. Tenorio-SánchezS.A. López-VillegasE.O. Potential use of Bacillus genera for metals removal from spent catalysts J. Environ. Sci. Heal. A 54 701 710 2019 10.1080/10934529.2019.158572031094278 Search in Google Scholar

Gu T., Rastegar S.O., Mousavi S.M., Li M., Zhou M.: Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technol. 261, 428–440 (2018) GuT. RastegarS.O. MousaviS.M. LiM. ZhouM. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge Bioresource Technol. 261 428 440 2018 10.1016/j.biortech.2018.04.03329703427 Search in Google Scholar

Haldar S.K.: Mineral Processing (in) Mineral Exploration, Ed. S.K. Haldar, Elsevier, Ámsterdam, p. 1–21 (2013) HaldarS.K. Mineral Processing (in) Mineral Exploration Ed. HaldarS.K. Elsevier Ámsterdam 1 21 2013 10.1016/B978-0-12-416005-7.00012-X Search in Google Scholar

Herrick S.S.: Alcoholic beverages. JAMA-J Am. Med. Assoc. 8, 416–419 (1898) HerrickS.S. Alcoholic beverages JAMA-J Am. Med. Assoc. 8 416 419 1898 10.1001/jama.1898.72440600016002d Search in Google Scholar

Hopfe S., Flemming K., Lehmann F., Möckel R., Kutschke S., Pollmann K.: Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manage. 62, 211–221 (2017) HopfeS. FlemmingK. LehmannF. MöckelR. KutschkeS. PollmannK. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha Waste Manage. 62 211 221 2017 10.1016/j.wasman.2017.02.00528223076 Search in Google Scholar

Horeh N.B., Mousavi S.M., Shojaosadati S.A.: Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger. J. Power Sources, 320, 257–266 (2016) HorehN.B. MousaviS.M. ShojaosadatiS.A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger J. Power Sources 320 257 266 2016 10.1016/j.jpowsour.2016.04.104 Search in Google Scholar

Hosseini Nasab M., Noaparast M., Abdollahi H., Amoozegar M.A.: Indirect bioleaching of Co and Ni from iron rich lateriteore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy, 193, 105309 (2020) Hosseini NasabM. NoaparastM. AbdollahiH. AmoozegarM.A. Indirect bioleaching of Co and Ni from iron rich lateriteore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger Hydrometallurgy 193 105309 2020 10.1016/j.hydromet.2020.105309 Search in Google Scholar

Huang K., Inoue K., Harada H., Kawakita H., Ohto K.: Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants. J. Mater. Cycles Waste, 13, 118–126 (2011) HuangK. InoueK. HaradaH. KawakitaH. OhtoK. Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants J. Mater. Cycles Waste 13 118 126 2011 10.1007/s10163-011-0001-5 Search in Google Scholar

Huggins F.E., Shah N., Huffman G.P., Kolker A., Crowley S., Palmer C.A., Finkelman R.B.: Mode of occurrence of chromium in four US coals. Fuel Process. Technol. 63, 79–92 (2000) HugginsF.E. ShahN. HuffmanG.P. KolkerA. CrowleyS. PalmerC.A. FinkelmanR.B. Mode of occurrence of chromium in four US coals Fuel Process. Technol. 63 79 92 2000 10.1016/S0378-3820(99)00090-9 Search in Google Scholar

Ilyas S., Chi R., Lee J.C., Bhatti H.N.: One step bioleaching of sulphide ore with low concentration of arsenic by Aspergillus niger and taguchi orthogonal array optimization. Chinese J. of Chem. Eng. 20, 923–929 (2012) IlyasS. ChiR. LeeJ.C. BhattiH.N. One step bioleaching of sulphide ore with low concentration of arsenic by Aspergillus niger and taguchi orthogonal array optimization Chinese J. of Chem. Eng. 20 923 929 2012 10.1016/S1004-9541(12)60419-4 Search in Google Scholar

Jadhav U.U., Hocheng H.: A review of recovery of metals from industrial waste. J. Achiev. Mater. Manuf. Eng. 54, 159–167 (2012) JadhavU.U. HochengH. A review of recovery of metals from industrial waste J. Achiev. Mater. Manuf. Eng. 54 159 167 2012 Search in Google Scholar

Ji B., Li Q., Zhang W.: Leaching recovery of rare earth elements from calcination product of a coal coarse refuse using organic acids. J. Rare Earth. DOI: 10.1016/j.jre.2020.11.021 (2020) JiB. LiQ. ZhangW. Leaching recovery of rare earth elements from calcination product of a coal coarse refuse using organic acids J. Rare Earth. 10.1016/j.jre.2020.11.021 2020 Open DOISearch in Google Scholar

Kim R., Cho H., Han K.N., Kim K., Mun M.: Optimization of acid leaching of rare-earth elements from mongolian apatite-based ore. Minerals, 6, 63 (2016) KimR. ChoH. HanK.N. KimK. MunM. Optimization of acid leaching of rare-earth elements from mongolian apatite-based ore Minerals 6 63 2016 10.3390/min6030063 Search in Google Scholar

Laurence D.: Establishing a sustainable mining operation: An overview. J. Clean. Prod. 19, 278–284 (2011) LaurenceD. Establishing a sustainable mining operation: An overview J. Clean. Prod. 19 278 284 2011 10.1016/j.jclepro.2010.08.019 Search in Google Scholar

Li L., Fan E., Guan Y., Zhang X., Xue Q., Wei L., Wu F., Chen R.: Sustainable Recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain. Chem. Eng. 5, 5224–5233 (2017) LiL. FanE. GuanY. ZhangX. XueQ. WeiL. WuF. ChenR. Sustainable Recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system ACS Sustain. Chem. Eng. 5 5224 5233 2017 10.1021/acssuschemeng.7b00571 Search in Google Scholar

Li L., Ge J., Wu F., Chen R., Chen S., Wu B.: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176, 288–293 (2010) LiL. GeJ. WuF. ChenR. ChenS. WuB. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant J. Hazard. Mater. 176 288 293 2010 10.1016/j.jhazmat.2009.11.02619954882 Search in Google Scholar

Liaud N., Giniés C., Navarro D., Fabre N., Crapart S., Gimbert I.H., Levasseur A., Raouche S., Sigoillot J.C.: Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 1, 1–10 (2014) LiaudN. GiniésC. NavarroD. FabreN. CrapartS. GimbertI.H. LevasseurA. RaoucheS. SigoillotJ.C. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi Fungal Biol. Biotechnol. 1 1 10 2014 10.1186/s40694-014-0001-z Search in Google Scholar

Ma E.: Recovery of waste printed circuit boards through pyrometallurgy (in) Electronic Waste Management and Treatment Technology, Ed. M.J. Vara-Prasad, M. Vithanage, Elsevier, Amsterdam, p. 247–267 (2019) MaE. Recovery of waste printed circuit boards through pyrometallurgy (in) Electronic Waste Management and Treatment Technology Ed. Vara-PrasadM.J. VithanageM. Elsevier Amsterdam 247 267 2019 10.1016/B978-0-12-816190-6.00011-X Search in Google Scholar

Mafi Gholami R., Mousavi S.M., Borghei S.M.: Process optimization and modeling of heavy metals extraction from a molybdenum rich spent catalyst by Aspergillus niger using response surface methodology. J. Ind. Eng. Chem. 18, 218–224 (2012) Mafi GholamiR. MousaviS.M. BorgheiS.M. Process optimization and modeling of heavy metals extraction from a molybdenum rich spent catalyst by Aspergillus niger using response surface methodology J. Ind. Eng. Chem. 18 218 224 2012 10.1016/j.jiec.2011.11.006 Search in Google Scholar

Mazurek K.: Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy, 134–135, 26–31 (2013) MazurekK. Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes Hydrometallurgy 134–135 26 31 2013 10.1016/j.hydromet.2013.01.011 Search in Google Scholar

Meshram P., Mishra A., Abhilash, Sahu R.: Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – A review. Chemosphere, 242, 125291 (2020) MeshramP. MishraA. Abhilash SahuR. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – A review Chemosphere 242 125291 2020 10.1016/j.chemosphere.2019.12529131896181 Search in Google Scholar

Minerals Council of Australia: 30 things produced by the Minerals Council of Australia, https://www.minerals.org.au/sites/default/files/30%20Things.pdf (12.01.2021) Minerals Council of Australia 30 things produced by the Minerals Council of Australia https://www.minerals.org.au/sites/default/files/30%20Things.pdf (12.01.2021) Search in Google Scholar

Min-Ji K., Ja-Yeon S., Yong-Seok C., Gyu-Hyeok K.: Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manage. 51, 168–173 (2016) Min-JiK. Ja-YeonS. Yong-SeokC. Gyu-HyeokK. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species Waste Manage. 51 168 173 2016 10.1016/j.wasman.2015.11.00126584557 Search in Google Scholar

Mishra D., Kim D., Ahn J., Rhee Y.: Bioleaching: A microbial process of metal recovery; A review. Met. Mater. Int. 11, 249–256 (2005) MishraD. KimD. AhnJ. RheeY. Bioleaching: A microbial process of metal recovery; A review Met. Mater. Int. 11 249 256 2005 10.1007/BF03027450 Search in Google Scholar

Mishra S.K., Mishra P.: Do adverse ecological consequences cause resistance against land acquisition? The experience of mining regions in Odisha, India. Extr. Ind. Soc. 4, 140–150 (2016) MishraS.K. MishraP. Do adverse ecological consequences cause resistance against land acquisition? The experience of mining regions in Odisha, India Extr. Ind. Soc. 4 140 150 2016 10.1016/j.exis.2016.11.004 Search in Google Scholar

Mohanty S., Ghosh S., Nayak S., Das A.P.: Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, 172, 302–309 (2017) MohantyS. GhoshS. NayakS. DasA.P. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits Chemosphere 172 302 309 2017 10.1016/j.chemosphere.2016.12.13628086158 Search in Google Scholar

Mouna H.M., Baral S.S.: A bio-hydrometallurgical approach towards leaching of lanthanum from the spent fluid catalytic cracking catalyst using Aspergillus niger. Hydrometallurgy, 184, 175–182 (2019) MounaH.M. BaralS.S. A bio-hydrometallurgical approach towards leaching of lanthanum from the spent fluid catalytic cracking catalyst using Aspergillus niger Hydrometallurgy 184 175 182 2019 10.1016/j.hydromet.2019.01.007 Search in Google Scholar

Musariri B., Akdogan G., Dorfling C., Bradshaw S.: Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries. Miner. Eng. 137, 108–117 (2019) MusaririB. AkdoganG. DorflingC. BradshawS. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries Miner. Eng. 137 108 117 2019 10.1016/j.mineng.2019.03.027 Search in Google Scholar

Naraian R., Kumari S.: Microbial production of organic acids. Prog. Ind. M. 33, 249–272 (1995) NaraianR. KumariS. Microbial production of organic acids Prog. Ind. M. 33 249 272 1995 10.1002/9781119048961.ch5 Search in Google Scholar

Nayaka G.P., Zhang Y., Dong P., Wang D., Pai K.V., Manjanna J., Santhosh G., Duan J., Zhou Z., Xiao J.: Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids. Waste Manage. 78, 51–57 (2018) NayakaG.P. ZhangY. DongP. WangD. PaiK.V. ManjannaJ. SanthoshG. DuanJ. ZhouZ. XiaoJ. Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids Waste Manage. 78 51 57 2018 10.1016/j.wasman.2018.05.03032559940 Search in Google Scholar

Ning P., Meng Q., Dong P., Duan J., Xu M., Lin Y., Zhang Y.: Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. Waste Manage. 103, 52–60 (2020) NingP. MengQ. DongP. DuanJ. XuM. LinY. ZhangY. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system Waste Manage. 103 52 60 2020 10.1016/j.wasman.2019.12.00231865035 Search in Google Scholar

Pathak A., Srichandan H., Kim D.J.: Fractionation behavior of metals (Al, Ni, V, and Mo) during bioleaching and chemical leaching of spent petroleum refinery catalyst. Water Air Soil Poll. 225, 1–10 (2014) PathakA. SrichandanH. KimD.J. Fractionation behavior of metals (Al, Ni, V, and Mo) during bioleaching and chemical leaching of spent petroleum refinery catalyst Water Air Soil Poll. 225 1 10 2014 10.1007/s11270-014-1893-1 Search in Google Scholar

Piri M., Sepehr E., Rengel Z.: Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma, 341, 39–45 (2019) PiriM. SepehrE. RengelZ. Citric acid decreased and humic acid increased Zn sorption in soils Geoderma 341 39 45 2019 10.1016/j.geoderma.2018.12.027 Search in Google Scholar

Qu Y., Lian B.: Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technol. 136, 16–23 (2013) QuY. LianB. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10 Bioresource Technol. 136 16 23 2013 10.1016/j.biortech.2013.03.07023548400 Search in Google Scholar

Qu Y., Lian B., Mo B., Liu C.: Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy, 136, 71–77 (2013) QuY. LianB. MoB. LiuC. Bioleaching of heavy metals from red mud using Aspergillus niger Hydrometallurgy 136 71 77 2013 10.1016/j.hydromet.2013.03.006 Search in Google Scholar

Rasoulnia P., Mousavi S.M.: Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresource Technol. 216, 729–736 (2016) RasoulniaP. MousaviS.M. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments Bioresource Technol. 216 729 736 2016 10.1016/j.biortech.2016.05.11427295250 Search in Google Scholar

Rasoulnia P., Mousavi S.M., Rastegar S.O., Azargoshasb H.: Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Manage. 52, 309–317 (2016) RasoulniaP. MousaviS.M. RastegarS.O. AzargoshasbH. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods Waste Manage. 52 309 317 2016 10.1016/j.wasman.2016.04.00427095291 Search in Google Scholar

Reed D.W., Fujita Y., Daubaras D.L., Jiao Y., Thompson V.S.: Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 166, 34–40 (2016) ReedD.W. FujitaY. DaubarasD.L. JiaoY. ThompsonV.S. Bioleaching of rare earth elements from waste phosphors and cracking catalysts Hydrometallurgy 166 34 40 2016 10.1016/j.hydromet.2016.08.006 Search in Google Scholar

Rene E.R., Sahinkaya E., Lewis A., Lens P.N.L.: Sustainable heavy metal remediation. Springer, Switzerland, 2017 ReneE.R. SahinkayaE. LewisA. LensP.N.L. Sustainable heavy metal remediation Springer Switzerland 2017 10.1007/978-3-319-61146-4 Search in Google Scholar

Ricke S.C.: Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 82, 632–639 (2003) RickeS.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials Poultry Sci. 82 632 639 2003 10.1093/ps/82.4.63212710485 Search in Google Scholar

Rivas V., Cendrero A., Hurtado M., Cabral M., Giménez J., Forte L., del Río L., Cantú M., Becker A.: Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology, 73, 185–206 (2006) RivasV. CendreroA. HurtadoM. CabralM. GiménezJ. ForteL. del RíoL. CantúM. BeckerA. Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina Geomorphology 73 185 206 2006 10.1016/j.geomorph.2005.08.006 Search in Google Scholar

Rojas-Avelizapa N.G., Otamendi-Valdez J., Gómez-Ramírez M. Metal leaching from a spent catalyst by Alternaria alternata. Mex. J. Biotechnol. 2, 221–231 (2017) Rojas-AvelizapaN.G. Otamendi-ValdezJ. Gómez-RamírezM. Metal leaching from a spent catalyst by Alternaria alternata Mex. J. Biotechnol. 2 221 231 2017 10.29267/mxjb.2017.2.2.221 Search in Google Scholar

Ruiz-Trujillo D.P.: Feasibility study about the use of organic acids as leaching agents (In Spanish). Universidad Tecnológica de Corregidora, México (17.06.2021) Ruiz-TrujilloD.P. Feasibility study about the use of organic acids as leaching agents (In Spanish) Universidad Tecnológica de Corregidora México 17 06 2021 Search in Google Scholar

Rudke A.P., Sikora de Souza V.A., Mota dos Santos A.M., Freitas Xavier A. C., Rotunno Filho O.C., Martins J.A.: Impact of mining activities on areas of environmental protection in the southwest of the Amazon: A GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020) RudkeA.P. Sikora de SouzaV.A. Mota dos SantosA.M. Freitas XavierA. C. Rotunno FilhoO.C. MartinsJ.A. Impact of mining activities on areas of environmental protection in the southwest of the Amazon: A GIS- and remote sensing-based assessment J. Environ. Manage. 263 110392 2020 10.1016/j.jenvman.2020.11039232174531 Search in Google Scholar

Santos-Ruiz A.: Chelation phenomenom in the biochemistry of the oligoelements (In Spanish). El fenómeno de quelación en la bioquímica de los oligoelementos. Real Academia de Farmacia de Madrid, https://xdoc.mx/preview/el-fenomeno-de-quelacion-en-la-bioquimica-de-los-oligoelementos-5fc9c4ad0c385 (17.06.2020) Santos-RuizA. Chelation phenomenom in the biochemistry of the oligoelements (In Spanish). El fenómeno de quelación en la bioquímica de los oligoelementos Real Academia de Farmacia de Madrid https://xdoc.mx/preview/el-fenomeno-de-quelacion-en-la-bioquimica-de-los-oligoelementos-5fc9c4ad0c385 17 06 2020 Search in Google Scholar

Sauer M., Porro D., Mattanovich D., Branduardi P.: Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26, 100–108 (2008) SauerM. PorroD. MattanovichD. BranduardiP. Microbial production of organic acids: expanding the markets Trends Biotechnol. 26 100 108 2008 10.1016/j.tibtech.2007.11.00618191255 Search in Google Scholar

Shahid M., Pinelli E., Dumat C.: Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J. Hazard. Mater. 219–220, 1–12 (2012) ShahidM. PinelliE. DumatC. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands J. Hazard. Mater. 219–220 1 12 2012 10.1016/j.jhazmat.2012.01.06022502897 Search in Google Scholar

Srichandan H., Mohapatra R.K., Parhi P.K., Mishra S.: Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy, 189, 105122 (2019) SrichandanH. MohapatraR.K. ParhiP.K. MishraS. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review Hydrometallurgy 189 105122 2019 10.1016/j.hydromet.2019.105122 Search in Google Scholar

Taghipour M., Jalali M.: Heavy metal release from some industrial wastes: Influence of organic and inorganic acids, clay minerals, and nanoparticles. Pedosphere, 28, 70–83. (2018) TaghipourM. JalaliM. Heavy metal release from some industrial wastes: Influence of organic and inorganic acids, clay minerals, and nanoparticles Pedosphere 28 70 83 2018 10.1016/S1002-0160(18)60005-0 Search in Google Scholar

Vakilchap F., Mousavi S.M., Shojaosadati S.A.: Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresour. Technol. 218, 991–998 (2016) VakilchapF. MousaviS.M. ShojaosadatiS.A. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process Bioresour. Technol. 218 991 998 2016 10.1016/j.biortech.2016.07.05927450129 Search in Google Scholar

Walco, S.A.: All about chelates (In Spanish), http://www.unipamplona.edu.co/unipamplona/portalIG/home_4/mod_virtuales/modulo2/6.pdf (17.06.2020) WalcoS.A. All about chelates (In Spanish) http://www.unipamplona.edu.co/unipamplona/portalIG/home_4/mod_virtuales/modulo2/6.pdf 17 06 2020 Search in Google Scholar

Wang Y.D., Li G.Y., Ding D.X., Zhang Z.Y., Chen J., Hu N., Li L.: Column leaching of uranium ore with fungal metabolic products and uranium recovery by ion exchange. J. Radioanal. Nucl. Chem. 304, 1139–1144 (2015) WangY.D. LiG.Y. DingD.X. ZhangZ.Y. ChenJ. HuN. LiL. Column leaching of uranium ore with fungal metabolic products and uranium recovery by ion exchange J. Radioanal. Nucl. Chem. 304 1139 1144 2015 10.1007/s10967-015-3957-0 Search in Google Scholar

Wu H.Y., Ting Y.P. Metal extraction from municipal solid waste (MSW) incinerator fly ash – Chemical leaching and fungal bioleaching. Enzyme Microb. Tech. 38, 839–847 (2006) WuH.Y. TingY.P. Metal extraction from municipal solid waste (MSW) incinerator fly ash – Chemical leaching and fungal bioleaching Enzyme Microb. Tech. 38 839 847 2006 10.1016/j.enzmictec.2005.08.012 Search in Google Scholar

Xia M., Bao P., Liu A., Wang M., Shen L., Yu R., Liu Y., Chen M., Li J., Wu X., Qiu G., Zeng W.: Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recy. 136, 267–275 (2018a) XiaM. BaoP. LiuA. WangM. ShenL. YuR. LiuY. ChenM. LiJ. WuX. QiuG. ZengW. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis Resour. Conserv. Recy. 136 267 275 2018a 10.1016/j.resconrec.2018.05.001 Search in Google Scholar

Xia M.C., Bao P., Liu A.J., Zhang S.S., Peng T.J., Shen L., Yu R.L., Wu X.L., Li J.K., Liu Y.D., Chen M., Qiu G.Z., Zeng W.M.: Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards. J. Biosci. Bioeng. 126, 78–87 (2018b) XiaM.C. BaoP. LiuA.J. ZhangS.S. PengT.J. ShenL. YuR.L. WuX.L. LiJ.K. LiuY.D. ChenM. QiuG.Z. ZengW.M. Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards J. Biosci. Bioeng. 126 78 87 2018b 10.1016/j.jbiosc.2018.02.00129573983 Search in Google Scholar

Xu T.J., Ramanathan T., Ting Y.P.: Bioleaching of incineration fly ash by Aspergillus niger – Precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol. Rep. 3, 8–14 (2014) XuT.J. RamanathanT. TingY.P. Bioleaching of incineration fly ash by Aspergillus niger – Precipitation of metallic salt crystals and morphological alteration of the fungus Biotechnol. Rep. 3 8 14 2014 10.1016/j.btre.2014.05.009546609528626642 Search in Google Scholar

Xu T.J., Ting Y.P.: Optimisation on bioleaching of incinerator fly ash by Aspergillus niger – Use of central composite design. Enzyme Microb. Tech. 35, 444–454 (2004) XuT.J. TingY.P. Optimisation on bioleaching of incinerator fly ash by Aspergillus niger – Use of central composite design Enzyme Microb. Tech. 35 444 454 2004 10.1016/j.enzmictec.2004.07.003 Search in Google Scholar

Yang X., Liu L., Tan W., Liu C., Dang Z., Qiu G.: Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environ. Pollut. 264, 114745 (2020) YangX. LiuL. TanW. LiuC. DangZ. QiuG. Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption Environ. Pollut. 264 114745 2020 10.1016/j.envpol.2020.11474532416427 Search in Google Scholar

Zeng X., Li J., Shen B.: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 295, 112–118 (2015) ZengX. LiJ. ShenB. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid J. Hazard. Mater. 295 112 118 2015 10.1016/j.jhazmat.2015.02.06425897692 Search in Google Scholar

Zhou J., Zhu N., Liu H., Wu P., Zhang X., Zhong Z.: Recovery of gallium from waste light emitting diodes by oxalic acidic leaching. Resour. Conserv. Recy. 146, 366–372 (2019) ZhouJ. ZhuN. LiuH. WuP. ZhangX. ZhongZ. Recovery of gallium from waste light emitting diodes by oxalic acidic leaching Resour. Conserv. Recy. 146 366 372 2019 10.1016/j.resconrec.2019.04.002 Search in Google Scholar

Zhou Y., Huang X., Huang G., Bai X., Tang X., Li Y.: Cu and Fe bioleaching in low-grade chalcopyrite and bioleaching mechanisms using Penicillium janthinellum strain GXCR. Sheng Wu Gong Cheng Xue Bao, 24, 1993–2002 (2008) ZhouY. HuangX. HuangG. BaiX. TangX. LiY. Cu and Fe bioleaching in low-grade chalcopyrite and bioleaching mechanisms using Penicillium janthinellum strain GXCR Sheng Wu Gong Cheng Xue Bao 24 1993 2002 2008 Search in Google Scholar

eISSN:
2545-3149
Sprachen:
Englisch, Polnisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie