Uneingeschränkter Zugang

Hydraulic performance assessment of a multi-layered landfill cover system under constant water ponding


Zitieren

Abbasi, F., Javaux, M., Vanclooster, M., & Feyen, J. (2012). Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189–190, 480–490. https://doi.org/10.1016/j.geoderma.2012.06.01310.1016/j.geoderma.2012.06.013 Search in Google Scholar

Abdolahzadeh, A. M., Lacroix Vachon, B., & Cabral, A. R. (2011). Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Can. Geotech. J., 48, 996–1009. https://doi.org/10.1139/t11-01710.1139/t11-017 Search in Google Scholar

Albright, W. H., Benson, C. H., & Apiwantragoon, P. (2012). Field hydrology of landfill final covers with composite barrier layers. J. Geotech. Geoenvironmental Eng., 139, 1–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.000074110.1061/(ASCE)GT.1943-5606.0000741 Search in Google Scholar

Albright, W. H., Benson, C. H., Gee, G. W., Abichou, T., Tyler, S. W., & Rock, S. A. (2006). Field performance of three compacted clay landfill covers. Vadose Zo. J., 5, 1157–1171. https://doi.org/10.2136/vzj2005.013410.2136/vzj2005.0134 Search in Google Scholar

Albright, W. H., Benson, C. H., Gee, G. W., Roesler, A. C., Abichou, T., Apiwantragoon, P., Lyles, B. F., & Rock, S.A. (2004). Field water balance of landfill final covers. J. Environ. Qual., 33, 2317–2332. https://doi.org/10.2134/jeq2004.231710.2134/jeq2004.231715537955 Search in Google Scholar

Aljaradin, M., & Persson, K.M. (2015). Numerical evaluation of different landfill daily cover in semiarid areas-Jordan. Int. J. Environ. Waste Manag. 16, 95–111. http://dx.doi.org/10.1504/IJEWM.2015.07128610.1504/IJEWM.2015.071286 Search in Google Scholar

Andreas, L., Diener, S., & Lagerkvist, A. (2014). Steel slags in a landfill top cover – Experiences from a full-scale experiment. Waste Manag., 34, 692–701. https://doi.org/10.1016/j.wasman.2013.12.00310.1016/j.wasman.2013.12.00324393476 Search in Google Scholar

Barnswell, K., & Dwyer, D. (2011). Assessing the performance of evapotranspiration covers for municipal solid waste landfills in Northwestern Ohio. J. Environ. Eng., 137, 301–305. https://doi.org/10.1061/(ASCE)EE.1943-7870.000032610.1061/(ASCE)EE.1943-7870.0000326 Search in Google Scholar

Benson, B. C. H., Daniel, D. E., & Boutwell, G.P. (1999). Field performance of compacted clay liners. J. Geotech. Geoenvironmental Eng., 125, 390–403. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(390)10.1061/(ASCE)1090-0241(1999)125:5(390) Search in Google Scholar

Benson, C., Abichou, T., Albright, W., Gee, G., & Roesler, A. (2001). Field evaluation of alternative earthen final covers. Int. J. Phytoremediation, 3, 105–127. https://doi.org/10.1080/1522651010850005210.1080/15226510108500052 Search in Google Scholar

Benson, C. H., & Khire, M. V. (1995). Earthen covers for semiarid and arid climates. Landfill Closures-Environmental Protection and Land Recovery, 201–217. Search in Google Scholar

Benson, C. H., Thorstad, P. A., Jo, H.-Y., & Rock, S. A. (2007). Hydraulic performance of geosynthetic clay liners in a landfill final cover. J. Geotech. Geoenvironmental Eng., 133, 814–827. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(814)10.1061/(ASCE)1090-0241(2007)133:7(814) Search in Google Scholar

Bohnhoff, G. L., Ogorzalek, A. S., Benson, C. H., Shackelford, C. D., & Apiwantragoon, P. (2009). Field data and water-balance predictions for a monolithic cover in a semiarid climate. J. Geotech. Geoenvironmental Eng., 135, 333–348. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(333)10.1061/(ASCE)1090-0241(2009)135:3(333) Search in Google Scholar

Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the irrigation and drainage division, 92(2), 61–88. https://doi.org/10.1061/JRCEA4.000042510.1061/JRCEA4.0000425 Search in Google Scholar

Chapuis, R. P. (2013). Full-scale evaluation of the performance of three compacted clay liners. Geotech. Test. J., 36, 1–9. https://doi.org/10.1520/GTJ2012019810.1520/GTJ20120198 Search in Google Scholar

Cuevas, J., Ruiz, A. I., de Soto, I. S., Sevilla, T., Procopio, J. R., Da Silva, P., Gismera, M. J., Regadío, M., Sánchez Jiménez, N., Rodríguez Rastrero, M., & Leguey, S. (2012). The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates. J. Environ. Manage., 95, S175–S181. https://doi.org/10.1016/j.jenvman.2011.02.01410.1016/j.jenvman.2011.02.01421420226 Search in Google Scholar

Fredlund, D. G., Sheng, D., & Zhao, J. (2011). Estimation of soil suction from the soil-water characteristic curve. Canadian geotechnical journal, 48(2), 186–198. https://doi.org/10.1139/T10-06010.1139/T10-060 Search in Google Scholar

Gallage, C., Kodikara, J., & Uchimura, T. (2013). Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found, 53(3), 417–430. https://doi.org/10.1016/j.sandf.2013.04.00410.1016/j.sandf.2013.04.004 Search in Google Scholar

Gapak, Y., & Tadikonda, V. B. (2018). Hysteretic water-retention behavior of bentonites. Journal of Hazardous, Toxic, and Radioactive Waste, 22(3), 04018008. https://doi.org/10.1061/(ASCE)HZ.2153-5515.000039810.1061/(ASCE)HZ.2153-5515.0000398 Search in Google Scholar

Guerrero, L. A., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Manag., 33(1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.00810.1016/j.wasman.2012.09.00823098815 Search in Google Scholar

Harnas, F. R., Rahardjo, H., Leong, E. C., & Wang, J. Y. (2014). Experimental study on dual capillary barrier using recycled asphalt pavement materials. Can. Geotech. J., 51, 1165–1177. https://doi.org/10.1139/cgj-2013-043210.1139/cgj-2013-0432 Search in Google Scholar

Hauser, V. L., Weand, B. L., & Gill, M. D. (2001). Natural covers for landfills and buried waste. Journal of Environmental Engineering, 127(9), 768–775. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:9(768)10.1061/(ASCE)0733-9372(2001)127:9(768) Search in Google Scholar

Henken-Mellies, W.U., & Schweizer, A. (2011). Long-term performance of landfill covers – Results of lysimeter test fields in Bavaria (Germany). Waste Manag. Res., 29, 59–68. https://doi.org/10.1177/0734242X1038574810.1177/0734242X1038574820937619 Search in Google Scholar

Ibrahim, A., Mukhlisin, M., & Jaafar, O. (2014). Rainfall infiltration through unsaturated layered soil column. Sains Malaysiana, 43, 1477–1484. Search in Google Scholar

Indrawan, I. G. B., Rahardjo, H., & Leong, E.-C. (2007). Drying and wetting characteristics of a two-layer soil column. Can. Geotech. J., 44, 20–32. https://doi.org/10.1139/t06-09010.1139/t06-090 Search in Google Scholar

Kelln, C. J., Barbour, S. L., Elshorbagy, A., & Qualizza, C. (2006). Long-term performance of a reclamation cover: the evaluation of hydraulic properties and hydrologic response. Unsaturated Soil, 813–824. https://doi.org/10.1061/40802(189)6410.1061/40802(189)64 Search in Google Scholar

Khire, M. V., Benson, C. H., & Bosscher, P. J. (2000). Capillary barriers: Design variables and water balance. J. Geotech. Geoenvironmental Eng., 126, 695–708.10.1061/(ASCE)1090-0241(2000)126:8(695) Search in Google Scholar

Kraus, J. F., Benson, C. H., Erickson, A. E., & Chamberlain, E. J. (1997). Freeze-thaw cycling and hydraulic conductivity of bentonite barriers. J. Geotech. Geoenvironmental Eng., 123, 229–238. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(229)10.1061/(ASCE)1090-0241(1997)123:3(229) Search in Google Scholar

Laner, D., Crest, M., Scharff, H., Morris, J. W. F., & Barlaz, M. A. (2012). A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag., 32, 498–512. https://doi.org/10.1016/j.wasman.2011.11.01010.1016/j.wasman.2011.11.01022188873 Search in Google Scholar

Lee, L. M., Kassim, A., & Gofar, N. (2011). Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils. Eng. Geol., 117, 78–89. https://doi.org/10.1016/j.enggeo.2010.10.00710.1016/j.enggeo.2010.10.007 Search in Google Scholar

Li, J. H., Du, L., Chen, R., & Zhang, L. M. (2013). Numerical investigation of the performance of covers with capillary barrier effects in South China. Comput. Geotech., 48, 304–315. https://doi.org/10.1016/j.compgeo.2012.08.00810.1016/j.compgeo.2012.08.008 Search in Google Scholar

Luellen, J. R., & Brydges, J. M. (2005). Long-term hydraulic performance evaluation for a multilayer closure cap. Pract. Period. Hazard. Toxic Radioact. Waste Manage., 9, 237–244. https://doi.org/10.1061/(ASCE)1090-025X(2005)9:4(237)10.1061/(ASCE)1090-025X(2005)9:4(237) Search in Google Scholar

McCartney, J. S., & Zornberg, J. G. (2010). Effects of infiltration and evaporation on geosynthetic capillary barrier performance. Can. Geotech. J., 47, 1201–1213. https://doi.org/10.1139/T10-02410.1139/T10-024 Search in Google Scholar

McGuire, P. E., Andraski, B. J., & Archibald, R. E. (2009). Case study of a full-scale evapotranspiration cover. J. Geotech. and Geoenvir. Engrg., 135, 316–332. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(316)10.1061/(ASCE)1090-0241(2009)135:3(316) Search in Google Scholar

Melchior, S., Sokollek, V., Berger, K., Vielhaber, B., & Steinert, B. (2010). Results from 18 years of in situ performance testing of landfill cover systems in Germany. J. Environ. Eng., 136, 815–823. https://doi.org/10.1061/(ASCE)EE.1943-7870.000020010.1061/(ASCE)EE.1943-7870.0000200 Search in Google Scholar

Mijares, R. G., Khire, M. V., & Johnson, T. (2012). Field-scale evaluation of lysimeters versus actual earthen covers. Geotech. Test. J., 35, 31–40. https://doi.org/10.1520/GTJ10357710.1520/GTJ103577 Search in Google Scholar

Mualem, Y. (1976). Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 1248–1254. https://doi.org/10.1029/WR012i006p0124810.1029/WR012i006p01248 Search in Google Scholar

Ng, C. W. W., Coo, J. L., Chen, Z. K., & Chen, R., (2016). Water infiltration into a new three-layer landfill cover system. J. Environ. Eng., 142, 04016007-1-12. https://doi.org/10.1061/(ASCE)EE.1943-7870.000107410.1061/(ASCE)EE.1943-7870.0001074 Search in Google Scholar

Ng, C. W. W., & Leung, A. K. (2012). Measurements of drying and wetting permeability functions using a new stress-controllable soil column. J. Geotech. Geoenvironmental Eng., 138, 58–68. https://doi.org/10.1061/(ASCE)GT.1943-5606.000056010.1061/(ASCE)GT.1943-5606.0000560 Search in Google Scholar

Nyhan, J. W., Shofield, T. G., & Starmer, R. H. (1997). A water balance study of four landfill cover designs varying in slope for semiarid regions. J. Environ. Qual., 26, 1385–1392. https://doi.org/10.2134/jeq1997.00472425002600050026x10.2134/jeq1997.00472425002600050026x Search in Google Scholar

Ogorzalek, A. S., Bohnhoff, G. L., Shackelford, C. D., Benson, C. H., & Apiwantragoon, P. (2008). Comparison of field data and water-balance predictions for a capillary barrier cover. J. Geotech. Geoenvironmental Eng., 134, 470–486. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(470)10.1061/(ASCE)1090-0241(2008)134:4(470) Search in Google Scholar

Parent, S. É., & Cabral, A. (2006). Design of inclined covers with capillary barrier effect. Geotech. Geol. Eng., 24, 689–710. https://doi.org/10.1007/s10706-005-3229-910.1007/s10706-005-3229-9 Search in Google Scholar

Rahardjo, H., Santoso, V. A., Leong, E. C., Ng, Y. S., & Hua, C. J. (2012). Performance of an instrumented slope covered by a capillary barrier system. J. Geotech. Geoenvironmental Eng., 138, 481–490. https://doi.org/10.1061/(ASCE)GT.1943-5606.000060010.1061/(ASCE)GT.1943-5606.0000600 Search in Google Scholar

Ribeiro, A. G. C., de Azevedo, R. F., Amorim, N. R., & Azevedo, I. D., (2010). Field performance and numerical analysis of cover systems. Electron. J. Geotech. Eng., 15 N, 1337–1352. Search in Google Scholar

Sadek, S., Ghanimeh, S., & El-Fadel, M. (2007). Predicted performance of clay-barrier landfill covers in arid and semi-arid environments. Waste Manag., 27, 572–583. https://doi.org/10.1016/j.wasman.2006.06.00810.1016/j.wasman.2006.06.00816987648 Search in Google Scholar

Scanlon, B. R., Reedy, R. C., Keese, K. E., & Dwyer, S. F. (2005). Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the Southwestern USA’. Vadose Zo. J., 4, 55–71. https://doi.org/10.2136/vzj2005.0055a10.2136/vzj2005.0055a Search in Google Scholar

Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2018). Performance evaluation of profile probe for continuous monitoring of volumetric water content in multilayered cover system. J. Environ. Eng., 144, 04018078-1-14. https://doi.org/10.1061/(ASCE)EE.1943-7870.000142410.1061/(ASCE)EE.1943-7870.0001424 Search in Google Scholar

Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2019). Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Advances in Civil Engineering Materials, 8(1), 322–335. https://doi.org/10.1520/ACEM2018009110.1520/ACEM20180091 Search in Google Scholar

Šimůnek, J., Šejna, M., & van Genuchten, M. T. (1998). The Hydrus-2D software package for simulating water flow and solute transport in two-dimensional variably saturated media. Igwmc – Tps – 53 Version, 2, 167. Search in Google Scholar

Tan, S. H., Wong, S. W., Chin, D. J., Lee, M. L., Ong, Y. H., Chong, S. Y., & Kassim, A. (2018). Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides. Environ. Earth Sci. 77, 1–13. https://doi.org/10.1007/s12665-018-7770-210.1007/s12665-018-7770-2 Search in Google Scholar

Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: measruements in coaxial transmission lines. Water Resour. Res., 16, 574–582. https://doi.org/10.1029/WR016i003p0057410.1029/WR016i003p00574 Search in Google Scholar

Touma, J., Vachaud, G., & Parlange, J. Y. (1984). Air and water flow in a sealed, ponded vertical soil column: Experiment and model. Soil Science, 137(3), 181–187.10.1097/00010694-198403000-00008 Search in Google Scholar

Travar, I., Andreas, L., Kumpiene, J., & Lagerkvist, A. (2015). Development of drainage water quality from a landfill cover built with secondary construction materials. Waste Manag., 35, 148–158. https://doi.org/10.1016/j.wasman.2014.09.01610.1016/j.wasman.2014.09.01625305684 Search in Google Scholar

Tripathy, S., Al-khyat, S., Cleall, P. J., Baille, W., & Schanz, T. (2016). Soil suction measurement of unsaturated soils with a sensor using fixed-matrix porous ceramic discs. Indian Geotech. J., 46, 252–260. https://doi.org/10.1007/s40098-016-0200-z10.1007/s40098-016-0200-z Search in Google Scholar

Turner, D. A., Beaven, R. P., & Woodman, N. D. (2017). Evaluating landfill aftercare strategies: A life cycle assessment approach. Waste Manag., 63, 417–431. https://doi.org/10.1016/j.wasman.2016.12.00510.1016/j.wasman.2016.12.00527989657 Search in Google Scholar

USEPA. (1989). Requirements for hazardous waste landfill design, construction, and closure. Semin. Publ. EPA, 1–127. Search in Google Scholar

USEPA. (1991). Design and construction of RCRA-CERCLA final covers. Semin. Peblication EPA/625/4, 1–208. Search in Google Scholar

Wang, Z., Feyen, J., Nielsen, D. R., & Van Genuchten, M. T. (1997). Two-phase flow infiltration equations accounting for air entrapment effects. Water Resour. Res., 33, 2759–2767. https://doi.org/10.1029/97WR0170810.1029/97WR01708 Search in Google Scholar

Wijeyesekera, D. C., O’Connor, K., & Salmon, D. E. (2001). Design and performance of a compacted clay barrier through a landfill. Eng. Geol., 60, 295–305. https://doi.org/10.1016/S0013-7952(00)00110-110.1016/S0013-7952(00)00110-1 Search in Google Scholar

Wosten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169–185. https://doi.org/10.1016/S0016-7061(98)00132-310.1016/S0016-7061(98)00132-3 Search in Google Scholar

Wu, H., Wen, Q., Hu, L., Gong, M., & Tang, Z. (2017). Feasibility study on the application of coal gangue as landfill liner material. Waste Manag., 63, 161–171. https://doi.org/10.1016/j.wasman.2017.01.01610.1016/j.wasman.2017.01.01628119038 Search in Google Scholar

Yanful, E. K., Morteza Mousavi, S., & De Souza, L. P. (2006). A numerical study of soil cover performance. J. Environ. Manage., 81, 72–92. https://doi.org/10.1016/j.jenvman.2005.10.00610.1016/j.jenvman.2005.10.00616556481 Search in Google Scholar

Yang, H., Rahardjo, H., & Leong, E.-C. (2006). Behavior of Unsaturated Layered Soil Columns during Infiltration. J. Hydrol. Eng., 11, 329–337. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(329)10.1061/(ASCE)1084-0699(2006)11:4(329) Search in Google Scholar

Yang, H., Rahardjo, H., Leong, E.-C., & Fredlund, D. G. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Can. Geotech. J., 41, 908–920. https://doi.org/10.1139/t04-04210.1139/t04-042 Search in Google Scholar

Zhan, T. L., Ng, C. W., & Fredlund, D. G. (2007). Field study of rainfall infiltration into a grassed unsaturated expansive soil slope. Can. Geotech. J., 44, 392–408. https://doi.org/10.1139/t07-00110.1139/t07-001 Search in Google Scholar

Zhan, T. L. T., Li, H., Jia, G. W., Chen, Y. M., & Fredlund, D. G. (2014). Physical and numerical study of lateral diversion by three-layer inclined capillary barrier covers under humid climatic conditions. Can. Geotech. J., 51, 1438–1448. https://doi.org/10.1139/cgj-2013-044910.1139/cgj-2013-0449 Search in Google Scholar

Zhang, W., & Sun, C. (2014). Parametric analyses of evapotranspiration landfill covers in humid regions. J. Rock Mech. Geotech. Eng., 6, 356–365. https://doi.org/10.1016/j.jrmge.2013.12.00510.1016/j.jrmge.2013.12.005 Search in Google Scholar

Zornberg, J. G., LaFountain, L., & Caldwell, J. A. (2003). Analysis and design of evapotranspirative cover for hazardous waste landfill. J. Geotech. Geoenvironmental Eng., 129, 427–438. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(427)10.1061/(ASCE)1090-0241(2003)129:6(427) Search in Google Scholar

eISSN:
1338-5259
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Umweltfreundliche und Nachhaltige Technologien