Zitieren

Sulaiman W, Gordon T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J. 2013; 13: 100–108. SulaimanW GordonT Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application Ochsner J. 2013 13 100 108 Search in Google Scholar

Chen Z. Progress of peripheral nerve repair. Chin J Traumatol. 2002; 5: 323–325. ChenZ Progress of peripheral nerve repair Chin J Traumatol. 2002 5 323 325 Search in Google Scholar

Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci. 2018; 19: 323–337. MaharM CavalliV Intrinsic mechanisms of neuronal axon regeneration Nat Rev Neurosci. 2018 19 323 337 Search in Google Scholar

Pigońska J, Bogucki A. Pourazowe uszkodzenia nerwów obwodowych - diagnostyka elektrofizjologiczna. Fam Med Prim Care Rev. 2015;17: 334–337. PigońskaJ BoguckiA Pourazowe uszkodzenia nerwów obwodowych - diagnostyka elektrofizjologiczna Fam Med Prim Care Rev. 2015 17 334 337 Search in Google Scholar

Kang JR, Zamorano DP, Gupta R. Limb salvage with major nerve injury: current management and future directions. J Am Acad Orthop Surg. 2011; 19: 28–34. KangJR ZamoranoDP GuptaR Limb salvage with major nerve injury: current management and future directions J Am Acad Orthop Surg. 2011 19 28 34 Search in Google Scholar

Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, Schorle H, Uncu C, Woolf C.J, He Z, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron. 2015; 86: 1000–1014. BelinS NawabiH WangC TangS LatremoliereA WarrenP SchorleH UncuC WoolfC.J HeZ Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics Neuron. 2015 86 1000 1014 Search in Google Scholar

Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V. Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1α. Neuron. 2015; 88: 720–734. ChoY ShinJE EwanEE OhYM Pita-ThomasW CavalliV Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1α Neuron. 2015 88 720 734 Search in Google Scholar

Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, Spencer T, Mellado W, Kandel ER, Filbin MT. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron. 2004; 44: 609–621. GaoY DengK HouJ BrysonJB BarcoA NikulinaE SpencerT MelladoW KandelER FilbinMT Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo Neuron. 2004 44 609 621 Search in Google Scholar

Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor suppressors having oncogenic functions: the double agents. Cells. 2020; 10: 46. DattaN ChakrabortyS BasuM GhoshMK Tumor suppressors having oncogenic functions: the double agents Cells. 2020 10 46 Search in Google Scholar

Jankowski MP, McIlwrath SL, Jing X, Cornuet PK, Salerno KM, Koerber HR, Albers KM. Sox 11 transcription factor modulates peripheral nerve regeneration in adult mice. Brain Res. 2009; 1256: 43–54. JankowskiMP McIlwrathSL JingX CornuetPK SalernoKM KoerberHR AlbersKM Sox 11 transcription factor modulates peripheral nerve regeneration in adult mice Brain Res. 2009 1256 43 54 Search in Google Scholar

Jankowski MP, Cornuet PK, McIlwrath S, Koerber HR, Albers KM. SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience. 2006; 143: 501–514. JankowskiMP CornuetPK McIlwrathS KoerberHR AlbersKM SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth Neuroscience. 2006 143 501 514 Search in Google Scholar

Jing X, Wang T, Huang S, Glorioso JC, Albers KM. The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a. Exp Neurol. 2012; 233: 221–232. JingX WangT HuangS GloriosoJC AlbersKM The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a Exp Neurol. 2012 233 221 232 Search in Google Scholar

Wang Z, Reynolds A, Kirry A, Nienhaus C, Blackmore MG. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosc. 2015; 35: 3139–3145. WangZ ReynoldsA KirryA NienhausC BlackmoreMG Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery J Neurosc. 2015 35 3139 3145 Search in Google Scholar

Norsworthy MW, Bei F, Kawaguchi R, Wang Q, Tran NM, Li Y, Brommer B, Zhang Y, Wang C, Sanes JR, et al. Sox11 expression promotes regeneration of some retinal ganglion cell types but kills others. Neuron. 2017; 94: 1112–1120. NorsworthyMW BeiF KawaguchiR WangQ TranNM LiY BrommerB ZhangY WangC SanesJR Sox11 expression promotes regeneration of some retinal ganglion cell types but kills others Neuron. 2017 94 1112 1120 Search in Google Scholar

Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ. 2009; 16: 543–554. TedeschiA NguyenT PuttaguntaR GaubP Di GiovanniS A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration Cell Death Differ. 2009 16 543 554 Search in Google Scholar

Forsberg K, Wuttke A, Quadrato G, Chumakov PM, Wizenmann A, Di Giovanni S. The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci. 2013; 33: 14318–14330. ForsbergK WuttkeA QuadratoG ChumakovPM WizenmannA Di GiovanniS The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling J Neurosci. 2013 33 14318 14330 Search in Google Scholar

Nix P, Hammarlund M, Hauth L, Lachnit M, Jorgensen EM, Bastiani M. Axon regeneration genes identified by RNAi screening in C. elegans. J Neurosci. 2014; 34: 629–645. NixP HammarlundM HauthL LachnitM JorgensenEM BastianiM Axon regeneration genes identified by RNAi screening in C. elegans J Neurosci. 2014 34 629 645 Search in Google Scholar

Onate M, Catenaccio A, Martinez G, Armentano D, Parsons G, Kerr B, Hetz C, Court FA. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury. Sci Rep. 2016; 6: 21709. OnateM CatenaccioA MartinezG ArmentanoD ParsonsG KerrB HetzC CourtFA Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury Sci Rep. 2016 6 21709 Search in Google Scholar

Marcol W, Kotulska K, Święch-Sabuda E, Larysz-Brysz M, Goka B, Górka D, Lewin-Kowalik J. Regeneration of sciatic nerves of adult rats induced by extracts from distal stumps of pre - degenerated peripheral nerves. J Neurosci Res. 2003; 72: 417–424. MarcolW KotulskaK Święch-SabudaE Larysz-BryszM GokaB GórkaD Lewin-KowalikJ Regeneration of sciatic nerves of adult rats induced by extracts from distal stumps of pre - degenerated peripheral nerves J Neurosci Res. 2003 72 417 424 Search in Google Scholar

Balice-Gordon RJ. Age-related changes in neuromuscular innervation. Muscle Nerve Suppl. 1997; 5: S83–87. Balice-GordonRJ Age-related changes in neuromuscular innervation Muscle Nerve Suppl. 1997 5 S83 87 Search in Google Scholar

Jang YC, Van Remmen H. Age-associated alterations of the neuromuscular junctions. Exp Gerontol. 2010; 46: 193–198. JangYC Van RemmenH Age-associated alterations of the neuromuscular junctions Exp Gerontol. 2010 46 193 198 Search in Google Scholar

Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavalakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLOS ONE. 2011; 6: e28090. ChaiRJ VukovicJ DunlopS GroundsMD ShavalakadzeT Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle PLOS ONE. 2011 6 e28090 Search in Google Scholar

Samuel MA, Valdez G, Tapia JC, Lichtman JW, Sanes JR. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLOS One. 2012; 7: e46663. SamuelMA ValdezG TapiaJC LichtmanJW SanesJR Agrin and synaptic laminin are required to maintain adult neuromuscular junctions PLOS One. 2012 7 e46663 Search in Google Scholar

Hausmanowa-Pretrusewicz I. Choroby nerwowo- mięśniowe. Czelej, Lublin, 2013. Hausmanowa-PretrusewiczI Choroby nerwowo- mięśniowe Czelej Lublin 2013 Search in Google Scholar

Collyer E, Catenaccio A, Lemaitre D, Diaz P, Valenzuela V, Bronfman F, Court FA. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration. Exp Neurol. 2014; 261: 451–461. CollyerE CatenaccioA LemaitreD DiazP ValenzuelaV BronfmanF CourtFA Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration Exp Neurol. 2014 261 451 461 Search in Google Scholar

Bao Q, Xiao C, Wang T, Gu Y. Novel atraumatic end-to-side repair model exhibits robust collateral sprouting independent of donor fiber injury. Plast Reconstr Surg. 2016; 137: 523–533. BaoQ XiaoC WangT GuY Novel atraumatic end-to-side repair model exhibits robust collateral sprouting independent of donor fiber injury Plast Reconstr Surg. 2016 137 523 533 Search in Google Scholar

Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007; 82: 163–201. NavarroX VivóM Valero-CabréA Neural plasticity after peripheral nerve injury and regeneration Prog Neurobiol. 2007 82 163 201 Search in Google Scholar

Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, Costigan M, Yekkirala A, Barrett L, et al. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron. 2016; 89: 956–970. ChandranV CoppolaG NawabiH OmuraT VersanoR HuebnerEA ZhangA CostiganM YekkiralaA BarrettL A systems-level analysis of the peripheral nerve intrinsic axonal growth program Neuron. 2016 89 956 970 Search in Google Scholar

Machaliński B, Łażewski-Banaszak P, Dąbkowska E, Paczkowska E, Gołąb-Janowska M, Nowacki P. Rola czynników neurotroficznych w procesach regeneracji układu nerwowego. (The role of neurotrophic factors in regeneration of the nervous system). Neurologia i Neurochirurgia Polska. 2012;46: 579–590. MachalińskiB Łażewski-BanaszakP DąbkowskaE PaczkowskaE Gołąb-JanowskaM NowackiP Rola czynników neurotroficznych w procesach regeneracji układu nerwowego. (The role of neurotrophic factors in regeneration of the nervous system) Neurologia i Neurochirurgia Polska 2012 46 579 590 Search in Google Scholar

Osiak K. Peripheral nerve surgery at the beginning of the third millennium. Postępy Nauk Medycznych. 2001; 3–4. OsiakK Peripheral nerve surgery at the beginning of the third millennium Postępy Nauk Medycznych. 2001 3 4 Search in Google Scholar

Gordon T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020; 21: 8652. GordonT Peripheral nerve regeneration and muscle reinnervation Int J Mol Sci. 2020 21 8652 Search in Google Scholar

Senger JLB, Verge VMK, Macandili HSJ, Olson JL, Chan KM, Webber CA. Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration. Exp Neurol. 2018; 302: 75–84. SengerJLB VergeVMK MacandiliHSJ OlsonJL ChanKM WebberCA Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration Exp Neurol. 2018 302 75 84 Search in Google Scholar

Senger JL, Chan KM, Macandili H, Chan AWM, Verge VMK, Jones KE, Webber CA. Conditioning electrical stimulation promotes functional nerve regeneration. Exp Neurol. 2019; 315: 60–71. SengerJL ChanKM MacandiliH ChanAWM VergeVMK JonesKE WebberCA Conditioning electrical stimulation promotes functional nerve regeneration Exp Neurol. 2019 315 60 71 Search in Google Scholar

Senger JB, Chan AWM, Chan KM, Kwan-Wong T, Acton L, Olson J, Webber CA. Conditioning electrical stimulation is superior to postoperative electrical stimulation in enhanced regeneration and functional recovery following nerve graft repair. Neurorehabil Neural Repair. 2020; 34: 299–308. SengerJB ChanAWM ChanKM Kwan-WongT ActonL OlsonJ WebberCA Conditioning electrical stimulation is superior to postoperative electrical stimulation in enhanced regeneration and functional recovery following nerve graft repair Neurorehabil Neural Repair. 2020 34 299 308 Search in Google Scholar

Gut M. Zmiany plastyczne w zdrowym i chorym mózgu. Kosmos. Problemy nauk biologicznych. 2007; 56: 63–74. GutM Zmiany plastyczne w zdrowym i chorym mózgu Kosmos. Problemy nauk biologicznych. 2007 56 63 74 Search in Google Scholar

Li C, Liu SY, Pi W, Zhang PX. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2021; 16: 1518–1523. LiC LiuSY PiW ZhangPX Cortical plasticity and nerve regeneration after peripheral nerve injury Neural Regen Res. 2021 16 1518 1523 Search in Google Scholar

Nakagawa K, Takemi M, Nakanishi T, Sasaki A, Nakazawa K. Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. Neuroimage Clin. 2020; 25:102144. NakagawaK TakemiM NakanishiT SasakiA NakazawaK Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms Neuroimage Clin. 2020 25 102144 Search in Google Scholar

Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018; 15: 46. GassertR DietzV Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective J Neuroeng Rehabil. 2018 15 46 Search in Google Scholar

Raspopovic S. Neurorobotics for neurorehabilitation. Science. 2021; 6: 634–635. RaspopovicS Neurorobotics for neurorehabilitation Science. 2021 6 634 635 Search in Google Scholar

Sawetz I, Smolle C, Girsch W. Erste Erfahrungen mit der peripheren Nervenstimulation mittels implantierbarem System als Behandlungsmethode des komplexen regionalen Schmerzsyndroms CRPS 2. Handchir Mikrochir Plast Chir. 2022; 54: 131–138. SawetzI SmolleC GirschW Erste Erfahrungen mit der peripheren Nervenstimulation mittels implantierbarem System als Behandlungsmethode des komplexen regionalen Schmerzsyndroms CRPS 2 Handchir Mikrochir Plast Chir. 2022 54 131 138 Search in Google Scholar

Nowotny J. Zarys Rehabilitacji w dysfunkcjach narządu ruchu. Katowice; 2000. NowotnyJ Zarys Rehabilitacji w dysfunkcjach narządu ruchu Katowice 2000 Search in Google Scholar

Gordon T, Sulaiman O, Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst. 2003; 8: 236–250. GordonT SulaimanO BoydJG Experimental strategies to promote functional recovery after peripheral nerve injuries J Peripher Nerv Syst. 2003 8 236 250 Search in Google Scholar

Forbes LH, Andrews MR. Advances in human stem cell therapies: pre-clinical studies and the outlook for central nervous system regeneration. Neural Regen Res. 2021; 16: 614–617. ForbesLH AndrewsMR Advances in human stem cell therapies: pre-clinical studies and the outlook for central nervous system regeneration Neural Regen Res. 2021 16 614 617 Search in Google Scholar

Thumble TE, Kahn U, Vanderhooft E, Bach AW. A technique to quantitate motor recovery following nerve grafting. J Hand Surg. 1995; 20: 367–372. ThumbleTE KahnU VanderhooftE BachAW A technique to quantitate motor recovery following nerve grafting J Hand Surg. 1995 20 367 372 Search in Google Scholar

Jaremczyk C. Wyniki operacyjnego leczenia urazowych uszkodzeń nerwów obwodowych kończyny górnej na materiale własnym. Chir Narz Ruchu Ortop Pol. 1995; LX: 2–77. JaremczykC Wyniki operacyjnego leczenia urazowych uszkodzeń nerwów obwodowych kończyny górnej na materiale własnym Chir Narz Ruchu Ortop Pol. 1995 LX 2 77 Search in Google Scholar

Dillon GP, Shidharan A, Ranieri JP, Bellamkonda RV. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomed Sci Polym Ed. 1998; 9: 1049. DillonGP ShidharanA RanieriJP BellamkondaRV The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold J Biomed Sci Polym Ed. 1998 9 1049 Search in Google Scholar

Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000; 5: 191–208. VerdúE CeballosD VilchesJJ NavarroX Influence of aging on peripheral nerve function and regeneration J Peripher Nerv Syst. 2000 5 191 208 Search in Google Scholar

Kaneko A, Naito K, Nakamura S, Miyahara K, Goto K, Obata H, Nagura N, Sugiyama Y, Kaneko K, Ishijima M. Influence of aging on the peripheral nerve repair process using an artificial nerve conduit. Exp Ther Med. 2021; 21: 168. KanekoA NaitoK NakamuraS MiyaharaK GotoK ObataH NaguraN SugiyamaY KanekoK IshijimaM Influence of aging on the peripheral nerve repair process using an artificial nerve conduit Exp Ther Med. 2021 21 168 Search in Google Scholar

Lundborg G. Nerve injury and repair-a challenge to the plastic brain. J Peripher Nerv Syst. 2003; 8: 209–226. LundborgG Nerve injury and repair-a challenge to the plastic brain J Peripher Nerv Syst. 2003 8 209 226 Search in Google Scholar

Berteli JA, Taleb M, Mira JC, Ghizoni MF. Functional recovery improvement is related to aberrant reinnervation trimming. A comparative study using fresh or predegenerated nerve grafts. Acta Neuropathol (Berl). 2006; 111: 601–609. BerteliJA TalebM MiraJC GhizoniMF Functional recovery improvement is related to aberrant reinnervation trimming. A comparative study using fresh or predegenerated nerve grafts Acta Neuropathol (Berl). 2006 111 601 609 Search in Google Scholar

eISSN:
1732-2693
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Mikrobiologie und Virologie, Medizin, Vorklinische Medizin, Grundlagenmedizin, Immunologie