Uneingeschränkter Zugang

Modeling the Shape of Wheat Kernels with the Use of Solids of Revolution

   | 31. Aug. 2023

Zitieren

Anders, A., Markowski, P., Kaliniewicz, Z. (2015). Numerical modelling of agricultural products on the example of bean and yellow lupine seeds. International Agrophysics, 29(4), 397-403. Search in Google Scholar

Ayr, U., Tamborrino, A., Catalano, P., Bianchi, B., Leone, A. (2015). 3D computational fluid dynamics simulation and experimental validation for prediction of heat transfer in a new malaxer machine. Journal of Food Engineering, 154, 30-38. Search in Google Scholar

Balcerzak, K., Weres, J., Górna, K., Idziaszek, P. (2015). Modeling of agri-food products on the basis of solid geometry with examples in autodesk 3ds Max and finite element mesh generation. Journal of Research and Applications in Agricultural Engineering, 60(2), 5-8. Search in Google Scholar

Becerra, L. D., Zuluaga, M., Mayorga, E. Y., Moreno, F. L., Ruíz, R. Y., Escobar, S. (2022). Cocoa seed transformation under controlled process conditions: Modelling of the mass transfer of organic acids and reducing sugar formation analysis. Food and Bioproducts Processing, 136, 211-225. Search in Google Scholar

Binelo, M. O., de Lima, R. F., Khatchatourian, O. A., Stransky, J. (2019). Modelling of the drag force of agricultural seeds applied to the discrete element method. Biosystems Engineering, 178, 168-175. Search in Google Scholar

Boryga, M., Kołodziej, P. (2022). Reverse Engineering in Modeling Agricultural Products. Agricultural Engineering, 26(1), 105-117. Search in Google Scholar

Caiyun, L., Zhen, G., Hongwen, L., Jin, H., Qingjie, W., Xuyang, W., Xiuhong, W., Shan, J., Jing, X., Dong, H., Yunxiang, L. (2023). An ellipsoid modelling method for discrete element simulation of wheat seeds. Biosystems Engineering 226, 1-15. Search in Google Scholar

Datta, A.K., Halder, A. (2008). Status of food process modeling and where do we go from here (synthesis of the outcome from brainstorming). Comprehensive Reviews in Food Science and Food Safety 7, 117–120. Search in Google Scholar

Dongxu, Y., Jianqun, Y., Yang, W., Long, Z., Yajun, Y. (2020). A general modelling method for soybean seeds based on the discrete element method. Powder Technology, 372, 212-226. Search in Google Scholar

Entem, E., Barthe, L., Cani, M.P., Cordier, F., Van de Panne, M. (2015). Modeling 3D animals from a side-view sketch. Computers & Graphics, 46, 221-230. Search in Google Scholar

Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M., Raji, A.O. (1999). Shape representation of axisym-metrical, non-spherical particles in discrete element simulation using multi-element model particles. Engineering Computations, 16, 467-480. Search in Google Scholar

FreeCAD 0.20.2. 2023. https://www.freecadweb.org. Search in Google Scholar

Gastón, A.L., Abalone, R.M., Giner, S.A. (2002). Wheat drying kinetics. Diffusivities for sphere and ellipsoid by finite elements. Journal of Food Engineering, 52(4), 313-322. Search in Google Scholar

GOM Inspect. 2023. https://www.gom.com. Search in Google Scholar

Goni, S,M., Purlis, E., Salvadori, V.O. (2007). Three-dimensional reconstruction of irregular foodstuffs. Journal of Food Engineering 82, 536-547. Search in Google Scholar

Goni, S.M., Purlis, E., Salvadori, V.O. (2008). Geometry modeling of food materials from magnetic resonance imaging. Journal of Food Engineering, 88, 561-567. Search in Google Scholar

Jancsok, P.T., Clijmans, L., Nicolai, B.M., De Baerdemaeker, J. (2001). Investigation of the effect of shape on the acoustic response of ‘conference’ pears by finite element modeling. Postharvest Biology and Technology, 23, 1-12. Search in Google Scholar

Jian, X., Xiaoming, W., Zhenbang, Z., Weibin, W. (2020). Discrete element modeling and simulation of soybean seed using multi-spheres and super-ellipsoids. IEEE Access, 8, 222672-222683. Search in Google Scholar

Jiangang, L., Xiangming, X., Yonghuai, L., Zexi, R., Melvyn, L. S., Liping, J., Bo, L. (2021). Quantitative potato tuber phenotyping by 3D imaging. Biosystems Engineering, 210, 48-59. Search in Google Scholar

Kim, J., Moreira, R.G., Huang, Y., Castell-Perez, M.E. (2007). 3-D dose distributions for optimum radiation treatment planning of complex foods. Journal of Food Engineering, 79, 312-321. Search in Google Scholar

Long, Z., Jianqun, Y., Liusuo, L., Yajun, Y., Dongxu, Y., Kai, S., Yang, W. (2021). Study on key issues in the modelling of maize seeds based on the multi-sphere method. Powder Technology, 394, 791-812. Search in Google Scholar

Long, Z., Jianqun, Y., Yang, W., Dongxu, Y., Yajun, Y. (2020). A study on the modelling method of maize-seed particles based on the discrete element method. Powder Technology, 374, 353-376. Search in Google Scholar

MeshLab Visual Computing Lab – ISTI – CNR. (2013). http://meshlab.sourceforge.net. Search in Google Scholar

Mieszkalski, L. (2013). Computer-aiding of mathematical modeling of the carrot (Daucus carota L.) root shape. Annals of Warsaw University of Life Sciences – SGGW. Agriculture, 61, 17-23. Search in Google Scholar

NextEngine User Manual. (2010). http://www.nextengine.com. Search in Google Scholar

Pasha, M., Hare, C., Ghadiri, M., Gunadi, A., Piccione, P.M. (2016). Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater. Powder Technology, 296, 29-36. Search in Google Scholar

Rahmi, U., Ferruh, E. (2009). Potential use of 3-dimensional scanners for food process modeling. Journal of Food Engineering, 93, 337-343. Search in Google Scholar

Sabliov, C.M., Bolder, D., Keener, K.M., Farkas, B.E. (2002). Image processing method to determine surface area and volume of axi-symmetric agricultural products. International Journal of Food Properties, 5, 641-653. Search in Google Scholar

Scheerlinck, N., Marquenie, D., Jancsok, P.T., Verboven, P., Moles, C.G., Banga, J.R., Nicolai, B.M. (2004). A model-based approach to develop periodic thermal treatments for surface decontamination of strawberries. Postharvest Biology and Technology, 34, 39-52. Search in Google Scholar

Shuai, W., Zhihong, Y., Aorigele, W.Z. (2022). Study on the modeling method of sunflower seed particles based on the discrete element method. Computers and Electronics in Agriculture, 198, 1-16. Search in Google Scholar

Sinnott, M. D., Harrison, S. M., Cleary, P. W. (2021). A particle-based modelling approach to food processing operations. Food and Bioproducts Processing, 127, 14-57. Search in Google Scholar

Tianyue, X., Jianqun, Y., Yajun, Y., Yang, W. (2018). A modelling and verification approach for soybean seed particles using the discrete element method. Advanced Powder Technology, 29, 3274-3290. Search in Google Scholar

Verboven, P., De Baerdemaeker, J., Nicolai, B.M. (2004). Using computational fluid dynamics to optimize thermal processes. In: Richardson. P. (Ed.), Improving the Thermal Processing of Foods. CRC Press. Boca Raton, FL, 82-102. Search in Google Scholar

Wiącek, J., Gallego, E., Parafiniuk, P., Kobyłka, R., Banda, M., Horabik, J., Molenda, M. (2021). Experimental analysis of wheat-wall friction and grain flow in a steel silo with corrugated walls. Biosystems Engineering, 209, 216-231. Search in Google Scholar

Xiaolong, L., Yitao, L., Qingxi, L. (2016). Simulation of seed motion in seed feeding device with DEMCFD coupling approach for rapeseed and wheat. Computers and Electronics in Agriculture, 131, 29-39. Search in Google Scholar

Yatskul, A., Lemiere, J. P., Cointault, F. (2017). Influence of the divider head functioning conditions and geometry on the seed’s distribution accuracy of the air-seeder. Biosystems Engineering, 161, 120-134. Search in Google Scholar

Zeren, C., Jianqun, Y., Duomei, X., Yang, W., Qiang, Z., Luquan, R. (2018). An approach to and validation of maize-seed-assembly modelling based on the discrete element method. Powder Technology, 328, 167-183. Search in Google Scholar

Zubko, V., Sirenko, V., Kuzina, T., Onychko, V., Sokolik, S., Roubik, H., Koszel, M. & Shchur, T. (2022). Modelling Wheat Grain Flow During Sowing Based on the Model of Grain with Shifted Center of Gravity. Agricultural Engineering, 26(1), 25-37. Search in Google Scholar