1. bookVolumen 26 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2449-5999
Erstveröffentlichung
12 Mar 2016
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Reverse Engineering in Modeling Agricultural Products

Online veröffentlicht: 20 Jul 2022
Volumen & Heft: Volumen 26 (2022) - Heft 1 (January 2022)
Seitenbereich: 105 - 117
Eingereicht: 01 May 2022
Akzeptiert: 01 Jun 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2449-5999
Erstveröffentlichung
12 Mar 2016
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

The purpose of the study was to use reverse engineering to model biological products, especially sugar beet root. In the process of creating the solid model, the appropriate tools available in the 3D design environment were applied. The 3D scan of the beet, in the form of a spatial point cloud, was used to project the root geometry. This was, in turn, used to construct a triangulation grid that includes nodal points of triangles. The subsequent steps presented the process of creating a solid model using the Interpolation Spline tool. Attention has been paid to the possibility of modifying the geometry by inserting additional points into the existing interpolation spline and changing angular position as well as the distance of the structural planes. Geometry mapping error values were determined with regard to the reference model depending on the spread value of the Structural Planes. Error courses are non-linear with a logarithmic line trend (surface field error) and a linear line trend (volume error). The effects demonstrated the usefulness of geometry projection and its applicability to support the strength testing of biological materials, with particular emphasis on dynamic tests using whole roots.

Ameen, W., Al-Ahmari, A.M., Mian, S.H. (2018). Evaluation of handheld scanners for automotive applications. Applied Sciences, 8(2), 217.10.3390/app8020217 Search in Google Scholar

Bochnia, J. (2019). The use of 3D scanning in reverse engineering. Mechanik, 3/2019, 194-196.10.17814/mechanik.2019.3.27 Search in Google Scholar

Burek, J., Jamuła, B., Flejszar, R. (2019). Analysis of the accuracy of the reproduction of the solid model from the parametric surface in the module Reverse Engineering NX system. Mechanik, 7, 468-470.10.17814/mechanik.2019.7.59 Search in Google Scholar

Celik, H.K., Rennie, A.E.W., Akinci, I. (2017). Reverse engineering approach for precise measurement of the physical attributes related to the geometric features of agricultural products. Food Measure, 11(1), 75-84.10.1007/s11694-016-9373-5 Search in Google Scholar

Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.W., Menesatti, P. (2011). Shape analysis of agricultural aroducts: A review of recent research advances and potential application to computer vision. Food and Bioprocess Technology, 4(5), 673-692.10.1007/s11947-011-0556-0 Search in Google Scholar

Dubravcik, M., Kender, S. (2012). Application of reverse engineering techniques in mechanics system services. Procedia Engineering, 48, 96-104.10.1016/j.proeng.2012.09.491 Search in Google Scholar

Gapinski, B., Wieczorowski, M., Marciniak-Podsadna, L., Dybala, B., Ziolkowski, G. (2014). Comparison of different method of measurement geometry using CMM, optical scanner and computed tomography 3D. Procedia Engineering, 69, 255-262.10.1016/j.proeng.2014.02.230 Search in Google Scholar

Kovacs, I., Varady, T., Salvi, P. (2015). Applying geometric constraints for perfecting CAD models in reverse engineering. Graphical Models, 82, 44-57.10.1016/j.gmod.2015.06.002 Search in Google Scholar

Pieróg, B.,Filipowicz, K., Pajor, M. (2020). Making copies of religious culture relics using reverse engineering. Mechanik, 4, 16-19.10.17814/mechanik.2020.4.10 Search in Google Scholar

Sikorski, S., Duda, P., Dulęba, K., Wróbel, Z. (2016). Reverse engineering in modeling of hip replacement. Mechanik, 12, 1912-1913.10.17814/mechanik.2016.12.549 Search in Google Scholar

Sokovic, M., Kopac, J. (2006). RE (reverse engineering) as necessary phase by rapid product development. Journal of Materials Processing Technology, 175(1-3), 398-403.10.1016/j.jmatprotec.2005.04.047 Search in Google Scholar

Vagovsky, J., Buransky, I., Gorog, A. (2015). Evaluation of measuring capability of the optical 3D scanner. Procedia Engineering, 100, 1198-1206.10.1016/j.proeng.2015.01.484 Search in Google Scholar

Wang, J., Gu, DX., Yu, ZY., Tan, CB., Zhou, LS. (2012). A framework for 3D model reconstruction in reverse engineering. Computers & Industrial Engineering, 63(4), 1189-1200.10.1016/j.cie.2012.07.009 Search in Google Scholar

Ye, XZ., Liu, HZ., Chen, L., Chen, ZY., Pan, X., &Zhang, SY. (2008). Reverse innovative design - an integrated product design methodology. Computer-Aided Design, 40(7), 812-827.10.1016/j.cad.2007.07.006 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo