Uneingeschränkter Zugang

Biochar modification and application to improve soil fertility and crop productivity


Zitieren

Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., and Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19 ‒ 33. DOI:10.1016/j.chemosphere.2013.10.071.24289982 Open DOISearch in Google Scholar

Awad, M., Moustafa-Farag, M., Wei, L. et al. (2020). Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arabian Journal of Geosciences, 13, 439. DOI:10.1007/s12517-020-05376-w. Open DOISearch in Google Scholar

Blackwell, P., Joseph, S., Munroe, P., Anawar, H.M., Storer, P., Gilkes, R.J., and Solaiman, Z.M. (2015). Influences of bio-char and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere, 25, 686 ‒ 695. DOI:10.1016/S1002-0160(15)30049-7. Open DOISearch in Google Scholar

Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H.W., Moeller, A. and Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching-a greenhouse experiment. Soil Use and Management, 28(2), 177 ‒ 184. DOI:10.1111/j.1475-2743.2012.00407.x. Open DOISearch in Google Scholar

Braghiroli, F.L., Bouafif, H., Neculita, C.M., and Koubaa, A. (2018). Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water, Air, & Soil Pollution, 229, 230. DOI:10.1007/s11270-018-3889-8. Open DOISearch in Google Scholar

Braghiroli, F.L., Bouafif, H., Neculita, C.M., and Koubaa, A. (2019). Performance of physically and chemically activated biochars in copper removal from contaminated mine effluents. Water, Air, & Soil Pollution, 230, 178. DOI:10.1007/s11270-019-4233-7. Open DOISearch in Google Scholar

Casini, D., Barsali, T., Rizzo, A.M., and Chiaramonti, D. (2021). Production and characterization of co-composted biochar and digestate from biomass anaerobic digestion. Biomass Conversion and Biorefinery, 11, 2271 ‒ 2279. DOI:10.1007/s13399-019-00482-6. Open DOISearch in Google Scholar

Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437 ‒ 444. DOI:10.1071/SR08036. Open DOISearch in Google Scholar

Chia, C.H., Singh, B.P., Joseph, S., Graber, E.R., and Munroe, P. (2014). Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis, 108, 26 ‒ 34. DOI: 10.1016/j.jaap.2014.05.021. Open DOISearch in Google Scholar

Cui, J., Jin, Q., Li, Y., and Li, F. (2019). The oxidation and removal of As(III) from soil using a novel magnetic nano-composite derived-biomass wastes. Environmental Science: Nano, 2. DOI:10.1039/c8en01257a. Open DOISearch in Google Scholar

Dad, F.P., Khan, W., Tanveer, M., Ramzani, M.A., Shaukat, R., and Muktadir, A. (2021). Influence of iron-enriched biochar on cd sorption, its ionic concentration and redox regulation of radish under cadmium toxicity. Agriculture, 11(1), 1. DOI: 10.3390/agriculture11010001. Open DOISearch in Google Scholar

Demiral, H., Demiral, İ., Karabacakoğlu, B., and Tümsek, F. (2011). Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research and Design, 89, 206 ‒ 213. DOI:10.1016/j.cherd.2010.05.005. Open DOISearch in Google Scholar

Dietrich, C., Rahaman, A., Robles-Aguilar, A.A., Latif, S., Intani, K., Muller, J., and Jablonowski, N.D. (2020). Nutrient loaded biochar doubled biomass production in juvenile maize plants (Zea mays L.). Agronomy, 10, 567. DOI:10.3390/agronomy10040567. Open DOISearch in Google Scholar

Dil, M., Oelbermann, M., and Xue, W. (2014). An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics. Canadian Journal of Soil Science, 94, 551 ‒ 562. DOI:10.4141/cjss-2014-010. Open DOISearch in Google Scholar

Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., Zeng, G., and Zhou, L. (2017). Potential benefits from biochar application for agricultural use: A review. Pedosphere, 27, 645 ‒ 661. DOI:10.1016/S1002-0160(17)60375-8. Open DOISearch in Google Scholar

Domingues, R.R., Trugilho, P.F., and Silva, C.A. (2017). Properties of biochar derived from wood and high nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One, 12, 1 ‒ 19. DOI:10.1371/journal.pone.0176884.542662728493951 Open DOISearch in Google Scholar

Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644 ‒ 53. DOI:10.1016/j.biortech.2012.03.022.22483559 Open DOISearch in Google Scholar

Fahmi, A.H., Samsuri, A.W., Jol, H., and Singh, D. (2018). Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. RSC Advances, 8, 38270 ‒ 38280. DOI:10.1039/c8ra06867d.909244135559079 Open DOISearch in Google Scholar

Farhangi-Abriz, S. and Ghassemi-Golezani, K. (2021). Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicology and Environmental Safety, 211, 111904. DOI:10.1016/j.ecoenv.2021.111904.33453639 Open DOISearch in Google Scholar

Filiberto, D. and Gaunt, J. (2013). Practicality of biochar additions to enhance soil and crop productivity. Agriculture, 3, 715 ‒ 725. DOI:10.3390/agriculture3040715. Open DOISearch in Google Scholar

Gao, M., Xu, Y., Chang, X., and Song, Z. (2021). Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil. Chemosphere, 270, 129428. DOI:10.1016/j.chemosphere.2020.129428.33388501 Open DOISearch in Google Scholar

Ghassemi-Golezani, K. and Abdoli, S. (2022). Alleviation of salt stress in rapeseed (Brassica napus L.) plants by bio-char-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Archives of agronomy and soil science. DOI:10.1080/03650340.2022.2103547. Open DOISearch in Google Scholar

Ghassemi-Golezani, K., Farhangi-Abriz, S., and Abdoli, S. (2021). How can biochar-based metal oxide nanocomposites counter salt toxicity in plants? Environmental Geo-chemistry and Health, 43, 2007 ‒ 2023. DOI:10.1007/s10653-020-00780-3.33219907 Open DOISearch in Google Scholar

Ghassemi-Golezani, K. and Rahimzadeh, S. (2022). Bio-char-based nutritional nanocomposites: a superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). Environmental Geochemistry and Health, PMID: 36153765. DOI:10.1007/s10653-022-01397-4.36153765 Open DOISearch in Google Scholar

Ghezzehei, T.A., Sarkhot, D.V., and Berhe, A.A. (2014). Bio-char can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth, 5, 953 ‒ 962. DOI:10.5194/se-5-953-2014. Open DOISearch in Google Scholar

Ghosh, S. and Barron, A.R. (2017). The effect of KOH concentration on chemical activation of porous carbon sorbents for carbon dioxide uptake and carbon dioxide-methane selectivity: the relative formation of micro- (<2 nm) versus meso- (>2 nm) porosity. Sustainable Energy & Fuels, 1, 806 ‒ 813. DOI:10.1039/C6SE00102E. Open DOISearch in Google Scholar

Gondek, K., Mierzwa-Hersztek, M., Kopeć, M., and Mróz, T. (2018). The influence of biochar enriched with magnesium and sulfur on the amount of Perennial Ryegrass biomass and selected chemical properties and biological of sandy soil. sandy soil. Communications in Soil Science and Plant Analysis, 49, 1257 ‒ 1265. DOI:10.1080/00103624.2018.1455848. Open DOISearch in Google Scholar

Gwenzi, W., Nyambishi, T.J., Chaukura, N., and Mapope, N. (2017). Synthesis and nutrient release patterns of a bio-char-based N-P-K slow-release fertilizer. International Journal of Environmental Science and Technology, 15, 405 ‒ 414. DOI:10.1007/s13762-017-1399-7. Open DOISearch in Google Scholar

Hafeez, A., Pan, T., Tian, J., and Cai, K. (2022). Modified bio-chars and their effects on soil quality: A review. Environments, 9, 60. DOI:10.3390/environments9050060. Open DOISearch in Google Scholar

Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., and Sillanpä, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, 1 ‒ 23. DOI:10.1007/s10311-019-00955-0. Open DOISearch in Google Scholar

Hossain, M.K., Strezov, V., Chan, K.Y., and Nelson, P.F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78, 1167 ‒ 1171. DOI:10.1016/j.chemosphere.2010.01.009.20110103 Open DOISearch in Google Scholar

Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J., and Wang, X. (2019). Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 1, 45 ‒ 73. DOI:10.1007/s42773-019-00006-5. Open DOISearch in Google Scholar

Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A.M., Solaiman, Z.M., Alghamdi, S.S., Ammara, U., Ok, Y.S., and Siddique, K.H.M. (2017). Biochar for crop production: Potential benefits and risks. Journal of Soils and Sediments, 17, 685 ‒ 716. DOI:10.1007/s11368-016-1360-2. Open DOISearch in Google Scholar

Islam, M.S., Abdoul Magid, A.I., Chen, Y., Weng Jie Ma, L., Arafat, M.Y., Haider Khan, Z., and Li, Y. (2021). Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Science of the Total Environment, 785, 147163. DOI:10.1016/j.scitotenv.2021.147163.33940407 Open DOISearch in Google Scholar

Jing, F., Chen, C., Chen, X., Liu, W., Wen, X., and Hu, S.H. (2021). Cadmium transport in red paddy soils amended with wheat straw biochar. Environmental Monitoring and Assessment, 193, 381. DOI:10.1007/s10661-021-09162-3.34085125 Open DOISearch in Google Scholar

Joseph, S., Graber, E.R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G.X., Li, L., Taylor, P., Rawal, A., and Hook, J. (2013). Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 4, 323 ‒ 343. DOI:10.4155/cmt.13.23. Open DOISearch in Google Scholar

Joseph, S., Anawar, H., Storer, P., Blackwell, P., Chia, C., Munroe, P., Donne, S., Horvat, J., Wang, J., and Solaiman, Z. (2015). Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere, 25, 749 ‒ 760. DOI:10.1016/S1002-0160(15)30056-4. Open DOISearch in Google Scholar

Kalinke, C., Oliveira, P.R., Mangrich, A., MarcolinoJuniorb, L., and Bergamini, M. (2020). Chemically-activated bio-char from Ricinus communis L. cake and their potential applications for the voltammetric assessment of some relevant environmental pollutants. Journal of the Brazilian Chemical Society, 31, 941 ‒ 952. DOI:10.21577/0103-5053.20190259. Open DOISearch in Google Scholar

Karim, A.A., Kumar, M., Singh, E., Kumar, A., Kumar, S., Ray, A., Kumar Dhal, N. (2021). Enrichment of primary macro-nutrients in biochar for sustainable agriculture: A review. Critical Reviews in Environmental Science and Technology, 52(9), 1449 ‒ 1490. DOI:10.1080/10643389.2020.1859271. Open DOISearch in Google Scholar

Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., and Wu, S. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11, 3211. DOI:10.3390/su11113211. Open DOISearch in Google Scholar

Kołtowski, M., Charmas, B., Skubiszewska-Zieba, J., and Oleszczuk, P. (2017). Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 136, 119 ‒ 125. DOI:10.1016/j.ecoenv.2016.10.033.27842277 Open DOISearch in Google Scholar

Lee, J.E. and Park, Y.K. (2020). Applications of modified bio-char-based materials for the removal of environment pollutants: a mini review. Sustainability, 12, 6112. DOI:10.3390/su12156112. Open DOISearch in Google Scholar

Li, J., Cai, X., Liu, Y., Gu, Y., Wang, H., Liu, S., Liu, S., Yin, Y., and Liu, S. (2020). Design and synthesis of a biochar-supported nano manganese dioxide composite for antibiotics removal from aqueous solution. Frontiers in Environmental Science, 8, 62. DOI:10.3389/fenvs.2020.00062. Open DOISearch in Google Scholar

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luiza˜o, F.J., Petersen, J., and Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719 ‒ 1730. DOI:10.2136/sssaj2005.0383. Open DOISearch in Google Scholar

Lian, F., Liu, X., Gao, M., Li, H., Qiu, W., and Song, Z. (2020). Effects of Fe-Mn-Ce oxide–modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Environmental Science and Pollution Research, 27, 18196 ‒ 18207. DOI:10.1007/s11356-020-08355-6.32172416 Open DOISearch in Google Scholar

Lima, I.M., Boateng, A.A., and Klasson, K.T. (2010). Physicochemical and adsorptive properties of fast-pyrolysis biochars and their steam activated counterparts. Journal of Chemical Technology & Biotechnology, 85, 1515 ‒ 1521. DOI:10.1002/jctb.2461. Open DOISearch in Google Scholar

Lin, L., Li, Z., Liu, X., Qiu, W., and Song, Z. (2019). Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environmental Pollution, 244, 600 ‒ 607. DOI:10.1016/j.envpol.2018.10.011.30384065 Open DOISearch in Google Scholar

Liu, S., Lu, Y., Yang, C., Liu, C., Ma, L., and Dang, Z. (2017). Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Environmental Science and Pollution Research, 24, 23815 ‒ 23824. DOI:10.1007/s11356-017-9994-1.28866780 Open DOISearch in Google Scholar

Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., and Xu, H. (2018). Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of the Total Environment, 645, 702 ‒ 709. DOI:10.1016/j.scitotenv.2018.07.115.30031328 Open DOISearch in Google Scholar

Liu, L., Li, Y., and Fan, S. (2019). Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes, 7, 891. DOI:10.3390/pr7120891. Open DOISearch in Google Scholar

Liu, C., Wang, W., Wu, R., Liu, Y., Lin, X., Kan, H., and Zheng, Y. (2020). Preparation of acid- and alkali-modified biochar for removal of methylene blue pigment. ACS Omega, 5, 30906 ‒ 30922. DOI:10.1021/acsomega.0c03688.772675833324799 Open DOISearch in Google Scholar

Lu, H.P., Li, Z.A., Gascó, G., Méndez, A., Shen, Y., and Paz-Ferreiro, J. (2018). Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Science of the Total Environment, 622623, 892 ‒ 899. DOI:10.1016/j.scitotenv.2017.12.056.29227940 Open DOISearch in Google Scholar

Maharlouei, Z.D., Fekri, M., Saljooqi, A., Mahmoodabadi, M., and Hejazi, M. (2021). Effect of modified biochar on the availability of some heavy metals speciation and investigation of contaminated calcareous soil. Environmental Earth Sciences, 80, 119. DOI:10.1007/s12665-021-09418-8. Open DOISearch in Google Scholar

Mandal, S., Sarkar, B., Bolan, N., Ok, Y.S., and Naidu, R. (2017). Enhancement of chromate reduction in soils by surface modified biochar. Journal of Environmental Management, 186, 277 ‒ 284. DOI:10.1016/j.jenvman.2016.05.034.27229360 Open DOISearch in Google Scholar

Matoso, S.C.G., WADT, P.G.S., Souza Júnior, VS de., and Pérez, X.L.O. (2019). Synthesis of enriched biochar as a vehicle for phosphorus in tropical soils. Acta Amazonica, 49, 268 ‒ 276. DOI:10.1590/1809-4392201803852. Open DOISearch in Google Scholar

Mensah, A.K. and Frimpong, K.A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 2018, 6837404, 1 ‒ 8. DOI:10.1155/2018/6837404. Open DOISearch in Google Scholar

Moradi, S., Rasouli-Sadaghiani, M.H., Sepehr, E., Khodaverdiloo, H., and Barin, M. (2019). Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environmental Monitoring and Assessment, 191(4), 257. DOI:10.1007/s10661-019-7393-4.30929074 Open DOISearch in Google Scholar

Muhammad, N., Hussain, M., Ullah, W. et al. (2018). Bio-char for sustainable soil and environment: a comprehensive review. Arabian Journal of Geosciences, 11, 731. DOI:10.1007/s12517-018-4074-5. Open DOISearch in Google Scholar

Nguyen, T.H., Pham, T.H., Nguyen, T., Hong, T., Nguyen, T.N., Nguyen, M.V. et al. (2019). Synthesis of iron-modified biochar derived from rice straw and its application to arsenic removal. Journal of Chemistry, 5295610, 1 ‒ 8. DOI:10.1155/2019/5295610. Open DOISearch in Google Scholar

Nkoh, J.N., Baquy, M.A., Mia, S., Shi, R., Kamran, M.A., Mehmood, K., and Xu, RA. (2021). Critical-systematic review of the interactions of biochar with soils and the observable outcomes. Sustainability, 13, 13726. DOI:10.3390/su132413726. Open DOISearch in Google Scholar

Ok, Y.S., Chang, S.X., Gao, B., and Chung, H.J. (2015). SMART biochar technology- a shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206 ‒ 209. DOI:10.1016/j.eti.2015.08.003. Open DOISearch in Google Scholar

Oleszczuk, P., Jośko, I., Kuśmierz, M., Futa, B., Wielgosz, E., Ligeza, S., and Pranagal, J. (2014). Microbiological, biochemical and eco-toxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma, 213, 502 ‒ 511. DOI:10.1016/j.geoderma.2013.08.027. Open DOISearch in Google Scholar

Rajendran, M., Shi, L., Wu, C., Li, W., An, W., Liu, Z., and Xue, S. (2019). Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere, 222, 314 ‒ 322. DOI:10.1016/j.chemosphere.2019.01.149.30708165 Open DOISearch in Google Scholar

Rajput, V.D., Gorovtsov, A.V., Fedorenko, G.M., Minkina, T.M., Fedorenko, A.G., Lysenko, V.S., Sushkova, S.S., Mandzhieva, S.S., and Elinson, M.A. (2020). The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environmental Geochemistry and Health, 43, 1477 ‒ 1489. DOI:10.1007/s10653-019-00505-1.31989352 Open DOISearch in Google Scholar

Rahimzadeh, S., and Ghassemi-Golezani, K. (2022). Biochar-based nutritional nanocomposites altered nutrient uptake and vacuolar H+-Pump activities of dill under salinity. Journal of soil science and plant nutrition, 22, 3568 ‒ 3581. DOI:10.1007/s42729-022-00910-z. Open DOISearch in Google Scholar

Ramola, S., Mohan, D., Masek, O., Méndez, A., and Tsubota, T. (2022). Engineered biochar: Fundamentals, preparation, characterization and applications. Springer, 381. DOI:10.1007/978-981-19-2488-0. Open DOISearch in Google Scholar

Reddy, D.H.K. and Lee, S.M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96 ‒ 103. DOI:10.1016/j.colsurfa.2014.03.105. Open DOISearch in Google Scholar

Rizhiya, E.Y., Horák, J., Šimanský, V., and Buchkina, N.P. (2020). Nitrogen enriched biochar-compost mixture as a soil amendment to the Haplic Luvisol: effect on greenhouse gas emission. Biologia, 75, 873 ‒ 884. DOI:10.2478/s11756-019-00335-7. Open DOISearch in Google Scholar

Sahin, O., Taskin, M.B., Kaya, E.C., Atakol, O., Emir, E., Inal, A., and Gunes, A. (2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33, 447 ‒ 456. DOI:10.1111/sum.12360. Open DOISearch in Google Scholar

Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., and Chen, W.Y. (2018). Chemical activation of biochar for energy and environmental applications: a comprehensive review. Reviews in Chemical Engineering, 35, 777 ‒ 815. DOI:10.1515/revce-2018-0003. Open DOISearch in Google Scholar

Sakhiya, A.K., Anand, A., and Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2, 253 ‒ 285. DOI:10.1007/s42773-020-00047-1. Open DOISearch in Google Scholar

Salgado, M.F., Abioye, A.M., Junoh, M.M., Santos, J.A.P., and Ani, F.N. (2018). Preparation of activated carbon from babassu endocarpunder microwave radiation by physical activation. IOP Conference Series. Earth and Environmental Science, 105, 012116. DOI:10.1088/1755-1315/105/1/012116. Open DOISearch in Google Scholar

Sarkhot, D.V., Berhe, A.A., and Ghezzehei, T.A. (2012). Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environment Quality, 41, 1107 ‒ 1114. DOI:10.2134/jeq2011.0123.22751052 Open DOISearch in Google Scholar

Schmidt, H.P., Pandit, B.H., Martinsen, V., Cornelissen, G., Conte, P., and Kammann, C. (2015). Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture, 5, 723 ‒ 741. DOI:10.3390/agriculture5030723. Open DOISearch in Google Scholar

Shetty, R., and Prakash, N.B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminum toxicity. Scientific Reports, 10, 12249. DOI:10.1038/s41598-020-69262-x.737805232704053 Open DOISearch in Google Scholar

Silva, T.C.F., Vergütz, L., Pacheco, A., Melo, L.F., Renato, N.S., and Melo, L.C.A. (2020). Characterization and application of magnetic biochar for the removal of phosphorus from water. Anais da Academia Brasileira de Ciencias, 92, 3. DOI:10.1590/0001-3765202020190440.33206798 Open DOISearch in Google Scholar

Sohi, S.P. (2012). Carbon Storage with Benefits. Science, 338, 1034 ‒ 1035. DOI:10.1126/science.1225987.23180849 Open DOISearch in Google Scholar

Strobel, R., Garche, J., Moseley, P.T., Jörissen, L., and Wolf, G. (2006). Hydrogen storage by carbon materials. Journal of Power Sources, 159, 781 ‒ 801. DOI:10.1016/j.jpowsour.2006.03.047. Open DOISearch in Google Scholar

Tan, X-f., Liu, Y-g., Gu, Y-l., Xu, Y., Zeng, G-m., Hu, X-j., Liu, S-b., Wang, X., Liu, S-m., and Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresource Technology, 212, 318 ‒ 333. DOI:10.1016/j.biortech.2016.04.093.27131871 Open DOISearch in Google Scholar

Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., and Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environmental Science and Pollution Research, 27, 9126 ‒ 9134. DOI:10.1007/s11356-019-07059-w.31916167 Open DOISearch in Google Scholar

Tian, K., Liu, W.J., Qian, T.T., Jiang, H., and Yu, H.Q. (2014). Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge. Environmental Science & Technology, 48, 10888 ‒ 10896. DOI:10.1021/es5022137.25141119 Open DOISearch in Google Scholar

Tokova, L., Igaz, D., Horak, J., and Aydin, E. (2020). Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10, 1005. DOI:10.3390/agronomy10071005. Open DOISearch in Google Scholar

Trakal, L., Veselská, V., Safařík, I., Vítková, M., Cíhalová, S., and Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology, 203, 318 ‒ 324. DOI:10.1016/j.biortech.2015.12.056.26748045 Open DOISearch in Google Scholar

Uddin, M.N., Techato, K., Taweekun, J., Rahman, M.M., Rasul, M.G., Mahlia, T.M.I., and Ashrafur, S.M. (2018). An overview of recent developments in biomass pyrolysis technologies. Energies, 11, 3115. DOI:10.3390/en11113115 Open DOISearch in Google Scholar

Ullah, Za., Ali, S., Muhammad, N. et al. (2020). Biochar impact on microbial population and elemental composition of red soil. Arabian Journal of Geosciences, 13, 757. DOI:10.1007/s12517-020-05671-6. Open DOISearch in Google Scholar

Utomo, W.H., Islami, T., Wisnubroto, E., and Soelistyari, H.T. (2017). Biochar as a carrier for nitrogen plant nutrition: 3. effect of enriched biochar on rice (Oryza sativa L.) yield and soil qualities. International Journal of Applied Engineering Research, 12, 10426 ‒ 10432. Search in Google Scholar

Wali, F., Naveed, M., Bashir, M.A., Asif, M., Ahmad, Z., Alkahtani, J., Alwahibi, M.S., and Soliman Elshikh, M. (2020). Formulation of biochar-based phosphorus fertilizer and its impact on both soil properties and chickpea growth performance. Sustainability, 12, 9528. DOI:10.3390/su12229528. Open DOISearch in Google Scholar

Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391 ‒ 395. DOI:10.1016/j.biortech.2014.10.104.25459847 Open DOISearch in Google Scholar

Wang, C.H., Gu, L.F., Ge, S.M., Li, X.Y., Zhang, X.Y., and Chen, X. (2019). Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environmental Technology, 40, 2345 ‒ 2353. DOI:10.1080/09593330.2018.1441328.29465023 Open DOISearch in Google Scholar

Wang, Y., Zheng, K., Zhan, W., Huang, L., Liu, Y., Li, T., Yang, Z., Liao, Q., Chen, R., Zhang, C., and Wang, Z. (2021). Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicology and Environmental Safety, 207, 111294. DOI:10.1016/j.ecoenv.2020.111294.32931971 Open DOISearch in Google Scholar

Wen, P., Wu, Z., Han, Y., Cravotto, G., Wang, J., and Ye, B.C. (2017). microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water retention capacity. ACS Sustainable Chemistry & Engineering, 5, 7374 ‒ 7382. DOI:10.1021/acssuschemeng.7b01721. Open DOISearch in Google Scholar

Wu, C., Shi, L., Xue, S., Li, W., Jiang, X., Rajendran, M., and Qian, Z. (2019a). Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Science of the Total Environment, 647, 1158 ‒ 1168. DOI:10.1016/j.scitotenv.2018.08.087.30180324 Open DOISearch in Google Scholar

Wu, L., Wei, C., Zhang, S., Wang, Y., Kuzyakov, Y., and Ding, X. (2019b). MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. Journal of Cleaner Production, 235, 901 ‒ 909. DOI:10.1016/j.jclepro.2019.07.043. Open DOISearch in Google Scholar

Yang, X., Zhang, S., Ju, M., and Liu, L. (2019). Preparation and modification of biochar materials and their application in soil remediation. Applied Sciences, 9, 1365. DOI:10.3390/app9071365. Open DOISearch in Google Scholar

Yao, Y., Gao, B., Chen, J., and Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47, 8700 ‒ 8708. DOI:10.1021/es4012977.23848524 Open DOISearch in Google Scholar

Yeboah, S., Zhang, R., Cai, L., Li, L., Xie, J., Luo, Z., Wu, J., and Antille, D.L. (2017). Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica, 55, 532 ‒ 542. DOI:10.1007/s11099-016-0672-1. Open DOISearch in Google Scholar

Yi, Y., Huang, Z., Lu, B., Xian, J., Eric Tsang, P., Cheng, W., Fang, J., and Fang, Z. (2019). Magnetic biochar for environmental remediation: a review. Bioresource Technology, 298. DOI:10.1016/j.biortech.2019.122468.31839494 Open DOISearch in Google Scholar

Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., and Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341 ‒ 349. DOI:10.1016/j.chemosphere.2016.10.069.27810533 Open DOISearch in Google Scholar

Zama, E.F., Reid, B.J., Sun, G.X., Yuan, H.Y., Li, X.M., Zhu, Y.G. (2018). Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. Journal of Cleaner Production, 189, 386 ‒ 395. DOI:10.1016/j.jclepro.2018.04.056. Open DOISearch in Google Scholar

Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26 ‒ 32. DOI:10.1016/j.cej.2012.08.052. Open DOISearch in Google Scholar

Zhang, M. and Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286 ‒ 292. DOI:10.1016/j.cej.2013.04.077. Open DOISearch in Google Scholar

Zhang, Q., Dijkstra, F.A., Liu, X., Wang, Y., Huang, J., Lu, N., and Singer, A.C. (2014). Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS ONE, 9, e102062. DOI:10.1371/journal.pone.0102062.409890225025330 Open DOISearch in Google Scholar

Zhang, H., Voroney, R.P., Price, G.W., and White, A.J. (2017). Sulfur-enriched biochar as a potential soil amendment and fertilizer. Soil Research, 55, 93 ‒ 99. DOI:10.1071/SR15256. Open DOISearch in Google Scholar

Zhang, L., Guo, J., Huang, X., Wang, W., Sun, P., Li, Y., and Han, J. (2019). Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(II) and Cd(ii). RSC Advances, 9, 365 ‒ 376. DOI:10.1039/c8ra09061k.905932135521601 Open DOISearch in Google Scholar

Zhang, Y., Zhao, C., Chen, G., Zhou, J., Chen, Z., Li, Z., Zhu, J., Feng, T., and Chen, Y. (2020). Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide-modified straw biochar in an arsenic-contaminated soil. Environmental Science and Pollution Research, 27, 23761 ‒ 23768. DOI:10.1007/s11356-020-08829-7.32301073 Open DOISearch in Google Scholar

Zhao, C., Wang, B., Theng, B., Wu, P., Liu, F., Wang, S., Lee, X., Chen, M., Li, L., and Zhang, X. (2021). Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. Science of the Total Environment, 767, 145305. DOI:10.1016/j.scitotenv.2021.145305.33636788 Open DOISearch in Google Scholar

Zhou, L., Huang, Y., Qiu, W., Sun, Z., Liu, Z., and Song, Z. (2017). Adsorption properties of nano-MnO2-Biochar composites for copper in aqueous solution. Molecules, 22, 173. DOI:10.3390/molecules22010173.615580328117702 Open DOISearch in Google Scholar

Zimmer, D., Panten, K., Frank, M., Springer, A., and Leinweber, P. (2019). Sulfur-enriched bone char as alternative P fertilizer: spectroscopic, wet chemical, and yield response evaluation. Agriculture, 9, 21. DOI:10.3390/agriculture9010021. Open DOISearch in Google Scholar

eISSN:
1338-4376
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Ökologie, andere