Uneingeschränkter Zugang

Effect of Chicken Manure-Based Fertiliser on Bacterial Communities and Diversity of Tomato Endosphere Microbiota


Zitieren

Allard, S.M., Walsh, C.S., Wallis, A.E., Ottesen, A.R., Brown, E.W., and Micallef, S.A. 2016. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Science of the Total Environment, 573, 555 ‒ 563. DOI:10.1016/j.scitotenv.2016.08.157.10.1016/j.scitotenv.2016.08.157 Search in Google Scholar

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403 ‒ 10. DOI:10.1016/S0022-2836(05)80360-2.10.1016/S0022-2836(05)80360-2 Search in Google Scholar

Bebber, D.P. and Richards, V.R. (2020). A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. bioRxiv, DOI:2020.10.04.325373.10.1101/2020.10.04.325373 Search in Google Scholar

Beecher, G.R. (1998). Nutrient content of tomatoes and tomato products. Experimental Biology and Medicine, 218(2), 98 ‒ 100. DOI:10.3181/00379727-218-44282a.10.3181/00379727-218-44282a9605204 Search in Google Scholar

Berg, G., Eberl, L., and Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental microbiology, 7(11), 1673 ‒ 1685. DOI:10.1111/j.1462-2920.2005.00891.x.10.1111/j.1462-2920.2005.00891.x16232283 Search in Google Scholar

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., and Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807 ‒ 38. DOI:10.1146/annurev-arplant-050312-120106.10.1146/annurev-arplant-050312-12010623373698 Search in Google Scholar

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335 ‒ 336. DOI:10.1038/nmeth.f.303.10.1038/nmeth.f.303315657320383131 Search in Google Scholar

Cheng, D., Tian, Z., Feng, L., Xu, L., and Wang, H. (2019). Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ, 6, e6162. DOI:10.7717/peerj.6162.10.7717/peerj.6162632788530643678 Search in Google Scholar

Dombrowski, N., Schlaeppi, K., Agler, M.T., Hacquard, S., Kemen, E., Garrido-Oter, R., Wunder, J., Coupland, G., and Schulze-Lefert, P. (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. The Isme Journal, 11(1), 43 ‒ 55. DOI:10.1038/ismej.2016.109.10.1038/ismej.2016.109509746427482927 Search in Google Scholar

Dong, C.-J., Wang, L.-L., Li, Q., and Shang, Q.-M. (2019). Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PloS one, 14(11), e0223847-e0223847. DOI:10.1371/journal.pone.0223847.10.1371/journal.pone.0223847683984531703074 Search in Google Scholar

Duncan, J. (2005). Composting chicken manure. WSU cooperative extension. King County Master Gardner and Cooperative Extension Livestock Advisor, Washington State University, Pullman. Retrieved 11 Nov 2017. Search in Google Scholar

Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460 ‒ 1. DOI:10.1093/bioinformatics/btq461.10.1093/bioinformatics/btq46120709691 Search in Google Scholar

Eo, J. and Park, K.-C. (2016). Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agriculture, Ecosystems & Environment, 231, 176 ‒ 182. DOI: org/10.1016/j.agee.2016.06.039.10.1016/j.agee.2016.06.039 Search in Google Scholar

Geisseler, D. and Scow, K.M. (2014). Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biology and Biochemistry, 75, 54 ‒ 63. DOI:10.1016/j.soilbio.2014.03.023.10.1016/j.soilbio.2014.03.023 Search in Google Scholar

Green, S.J., Prakash, O., Jasrotia, P., Overholt, W.A., Cardenas, E., Hubbard, D., Tiedje, J.M., Watson, D.B., Schadt, C.W., and Brooks, S.C. (2012). Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Applied and Environmental Microbiology, 78(4), 1039 ‒ 1047. DOI:10.1128/AEM.06435-11.10.1128/AEM.06435-11327302222179233 Search in Google Scholar

Guron, G.K., Arango-Argoty, G., Zhang, L., Pruden, A., and Ponder, M.A. (2019). Effects of dairy manure-based amendments and soil texture on lettuce-and radish-associated microbiota and resistomes. Msphere, 4(3), 13 ‒ 19. DOI:10.1128/mSphere.00239-19.10.1128/mSphere.00239-19650661931068435 Search in Google Scholar

Haas, D. and Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307 ‒ 319. DOI:10.1038/nrmicro1129.10.1038/nrmicro112915759041 Search in Google Scholar

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., and Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895 ‒ 914. DOI: 10.1139/M97-131.10.1139/m97-131 Search in Google Scholar

Hartmann, M., Frey, B., Mayer, J., Mäder, P., and Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9(5), 1177 ‒ 1194. DOI:10.1038/ismej.2014.210.10.1038/ismej.2014.210440916225350160 Search in Google Scholar

Ji, L., Wu, Z., You, Z., Yi, X., Ni, K., Guo, S., and Ruan, J. (2018). Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agriculture, Ecosystems & Environment, 268, 124 ‒ 132. DOI:10.1007/s00374-020-01439-y.10.1007/s00374-020-01439-y Search in Google Scholar

Kamau, D., Spiertz, J., and Oenema, O. (2008). Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density. Plant and Soil, 307(1), 29 ‒ 39. DOI:10.1007/s11104-008-9576-6.10.1007/s11104-008-9576-6 Search in Google Scholar

Lee, S.A., Kim, Y., Kim, J.M., Chu, B., Joa, J.-H., Sang, M.K., Song, J. and Weon, H.-Y. (2019). A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scientific Reports, 9(1), 1 ‒ 15. DOI: org/10.1038/s41598-019-45660-8.10.1038/s41598-019-45660-8659496231243310 Search in Google Scholar

Li, C., Yan, K., Tang, L., Jia, Z., and Li, Y. (2014). Change in deep soil microbial communities due to long-term fertilization. Soil Biology and Biochemistry, 75, 264 ‒ 272. DOI:10.1016/j.soilbio.2014.04.023.10.1016/j.soilbio.2014.04.023 Search in Google Scholar

Lin, L., Ge, H.M., Yan, T., Qin, Y.H., and Tan, R.X. (2012). Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta, 236(6), 1849 ‒ 1861. DOI:10.1007/s00425-012-1741-8.10.1007/s00425-012-1741-822922880 Search in Google Scholar

Loper, J.E., Hassan, K.A., Mavrodi, D.V., Davis II, E.W., Lim, C.K., Shaffer, B.T., Elbourne, L.D., Stockwell, V.O., Hartney, S.L., and Breakwell, K. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet, 8(7), e1002784. DOI:10.1371/journal.pgen.1002784.10.1371/journal.pgen.1002784339038422792073 Search in Google Scholar

Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., and Del Rio, T.G. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86 ‒ 90. DOI:10.1038/nature11237.10.1038/nature11237407441322859206 Search in Google Scholar

Luo, L., Wang, P., Zhai, Z., Su, P., Tan, X., Zhang, D., Zhang, Z., and Liu, Y. (2019). The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities. AMB Express, 9(1), 1 ‒ 10. DOI:10.1186/s13568-019-0897-z.10.1186/s13568-019-0897-z682341931673871 Search in Google Scholar

Magoč, T. and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957 ‒ 63. DOI:10.1093/bioinformatics/btr507.10.1093/bioinformatics/btr507319857321903629 Search in Google Scholar

Manching, H.C., Balint-Kurti, P.J., and Stapleton, A.E. (2014). Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science, 5, 403. DOI:10.3389/fpls.2014.00403.10.3389/fpls.2014.00403413365025177328 Search in Google Scholar

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1), 10. DOI:10.14806/ej.17.1.200.10.14806/ej.17.1.200 Search in Google Scholar

Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., Buckler, E.S., and Ley, R.E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 65486553. DOI:10.1073/pnas.1302837110.10.1073/pnas.1302837110363164523576752 Search in Google Scholar

Schreiter, S., Babin, D., Smalla, K., and Grosch, R. (2018). Rhizosphere competence and biocontrol effect of Pseudomonas sp. RU47 independent from plant species and soil type at the field scale. Frontiers in Microbiology, 9, 97. DOI:10.3389/fmicb.2018.00097.10.3389/fmicb.2018.00097579923929449832 Search in Google Scholar

Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S., and Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67(5), 2284 ‒ 2291. DOI:10.1128/AEM.67.5.2284-2291.2001.10.1128/AEM.67.5.2284-2291.2001 Search in Google Scholar

Sturz, A.V., Christie, B.R., and Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19(1), 1 ‒ 30. DOI:10.1080/07352680091139169.10.1080/07352680091139169 Search in Google Scholar

Tian, B., Zhang, C., Ye, Y., Wen, J., Wu, Y., Wang, H., Li, H., Cai, S., Cai, W., and Cheng, Z. (2017). Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems & Environment, 247, 149 ‒ 156. DOI:10.1016/j.agee.2017.06.041.10.1016/j.agee.2017.06.041 Search in Google Scholar

Torsvik, V. and Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3), 240 ‒ 245. DOI:10.1016/s1369-5274(02)00324-7.10.1016/S1369-5274(02)00324-7 Search in Google Scholar

Turner, T.R., James, E.K., and Poole, P.S. (2013). The plant microbiome. Genome Biol, 14(6), 209. DOI:10.1186/gb-2013-14-6-209.10.1186/gb-2013-14-6-209370680823805896 Search in Google Scholar

van Elsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottova, D., Kristufek, V., and Salles, J.F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the USA, 109(4), 1159 ‒ 64. DOI:10.1073/pnas.1109326109.10.1073/pnas.1109326109326828922232669 Search in Google Scholar

Wang, X., Van Nostrand, J.D., Deng, Y., Lü, X., Wang, C., Zhou, J., and Han, X. (2015). Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China’s grasslands. FEMS Microbiology Ecology, 91(12). DOI:10.1093/femsec/fiv133.10.1093/femsec/fiv13326519142 Search in Google Scholar

Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., and Thomashow, L.S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40(1), 309 ‒ 348. DOI:10.1146/annurev.phyto.40.030402.110010.10.1146/annurev.phyto.40.030402.11001012147763 Search in Google Scholar

Xiao, Y., Liu, X., Meng, D., Tao, J., Gu, Y., Yin, H., and Li, J. (2018). The role of soil bacterial community during winter fallow period in the incidence of tobacco bacterial wilt disease. Applied Microbiology and Biotechnology, 102(5), 2399 ‒ 2412. DOI:10.1007/s00253-018-8757-3.10.1007/s00253-018-8757-329368216 Search in Google Scholar

Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., and Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, 126328. DOI:10.1016/j.micres.2019.126328.10.1016/j.micres.2019.12632831521946 Search in Google Scholar

Yang, H., Li, J., Xiao, Y., Gu, Y., Liu, H., Liang, Y., Liu, X., Hu, J., Meng, D., and Yin, H. (2017). An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease. Frontiers in Microbiology, 8, 2179. DOI:10.3389/fmicb.2017.02179.10.3389/fmicb.2017.02179568190529163453 Search in Google Scholar

Ye, G., Banerjee, S., He, J.-Z., Fan, J., Wang, Z., Wei, X., Hu, H., Zheng, Y., Duan, C., Wan, S., Chen, J., and Yongxin, L. (2021). Manure application increases microbiome complexity in soil aggregate fractions: Results of an 18-year field experiment. Agriculture Ecosystems & Environment, 307, 107249. DOI:10.1016/j.agee.2020.107249.10.1016/j.agee.2020.107249 Search in Google Scholar

Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glöckner, F.O. (2014). The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42(D1), D643 ‒ 648. DOI:10.1093/nar/gkt1209.10.1093/nar/gkt1209396511224293649 Search in Google Scholar

Zhang, S., Sun, L., Wang, Y., Fan, K., Xu, Q., Li, Y., Ma, Q., Wang, J., Ren, W., and Ding, Z. (2020a). Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiology, 20(1), 190. DOI:10.1186/s12866-020-01871-y.10.1186/s12866-020-01871-y732941532611380 Search in Google Scholar

Zhang, X., Zhang, Q., Liang, B., and Li, J. (2017). Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Applied Soil Ecology, 121, 82 ‒ 89. DOI:10.1016/j.apsoil.2017.08.016.10.1016/j.apsoil.2017.08.016 Search in Google Scholar

Zhang, Y.J., Hu, H.W., Chen, Q.L., Singh, B.K., Yan, H., Chen, D., and He, J.Z. (2019). Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International, 130, 104912. DOI:10.1016/j.envint.2019.104912.10.1016/j.envint.2019.10491231220751 Search in Google Scholar

Zhang, Y.J., Hu, H.W., Chen, Q.L., Yan, H., Wang, J.T., Chen, D., and He, J.Z. (2020b). Manure application did not enrich antibiotic resistance genes in root endophytic bacterial microbiota of cherry radish plants. Applied and Environmental Microbiology, 86(2). DOI:10.1128/AEM.02106-19.10.1128/AEM.02106-19695222331704674 Search in Google Scholar

Zhen, Z., Liu, H., Wang, N., Guo, L., Meng, J., Ding, N., Wu, G., and Jiang, G. (2014). Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLOS ONE, 9(10), e108555. DOI:10.1371/journal.pone.0108555.10.1371/journal.pone.0108555419376625302996 Search in Google Scholar

Zhong, X.-Z., Ma, S.-C., Wang, S.-P., Wang, T.-T., Sun, Z.-Y., Tang, Y.-Q., Deng, Y., and Kida, K. (2018). A comparative study of composting the solid fraction of dairy manure with or without bulking material: performance and microbial community dynamics. Bioresource Technology, 247, 443 ‒ 452. DOI:10.1016/j.biortech.2017.09.10.1016/j.biortech.2017.09.116 Search in Google Scholar

eISSN:
1338-4376
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Ökologie, andere