Zitieren

Bouattour, M., Casals, R., Albanell, E., Such, X., & Caja, G. (2008). Feeding soybean oil to dairy goats increases conjugated linoleic acid in milk. Journal of Dairy Science, 91(6), 2399–2407. https://doi.org/10.3168/jds.2007-0753 Search in Google Scholar

Zhu, H., Ma, J., Du, R., Zheng, L., Wu, J., Song, W., … & Hua, J. (2014). Characterization of immortalized dairy goat male germline stem cells (mgscs). Journal of Cellular Biochemistry, 115(9), 1549–1560. https://doi.org/10.1002/jcb.24812 Search in Google Scholar

Lu, C. and Miller, B. (2019). Current status, challenges and prospects for dairy goat production in the americas. Asian-Australasian Journal of Animal Sciences, 32(8), 1244–1255. https://doi.org/10.5713/ajas.19.0256 Search in Google Scholar

Bett, R., Kosgey, I., Kahi, A., & Peters, K. (2008). Analysis of production objectives and breeding practices of dairy goats in kenya. Tropical Animal Health and Production, 41(3), 307–320. https://doi.org/10.1007/s11250-008-9191-9 Search in Google Scholar

Romero-Huelva, M., Ramírez-Fenosa, M., Planelles-González, R., García-Casado, P., & Molina-Alcaide, E. (2017). Can by-products replace conventional ingredients in concentrate of dairy goat diet?. Journal of Dairy Science, 100(6), 4500–4512. https://doi.org/10.3168/jds.2016-11766 Search in Google Scholar

Tsiplakou, E., Kotrotsios, V., Hadjigeorgiou, I., & Zervas, G. (2010). Differences in sheep and goats milk fatty acid profile between conventional and organic farming systems. Journal of Dairy Research, 77(3), 343–349. https://doi.org/10.1017/s0022029910000270 Search in Google Scholar

Bampidis, V., Azimonti, G., Bastos, M., Dusemund, B., Durjava, M., Kouba, M., … & Revez, J. (2022). Assessment of the efficacy of the feed additive consisting of saccharomyces cerevisae cncm i‐1077 (levucell® sc) for dairy cows, cattle for fattening, minor ruminant species and camelids (lallemand sas). Efsa Journal, 20(7). https://doi.org/10.2903/j.efsa.2022.7431 Search in Google Scholar

Leiber, F., Arnold, N., Heckendorn, F., & Werne, S. (2020). Assessing effects of tannin-rich sainfoin supplements for grazing dairy goats on feed protein efficiency. Journal of Dairy Research, 87(4), 397–399. https://doi.org/10.1017/s0022029920000965 Search in Google Scholar

Contreras-Jodar, A., Salama, A., Hamzaoui, S., Vailati-Riboni, M., Caja, G., & Loor, J. (2018). Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. Journal of Dairy Research, 85(4), 423–430. https://doi.org/10.1017/s0022029918000705 Search in Google Scholar

Mosolov, A., Gorlov, I., Nikolaev, D., Slozhenkina, M., Kudryashova, O., & Vasilyeva, M. (2022). Ensuring environmental safety of goat milk production based on the integration of innovations in feeding. Iop Conference Series Earth and Environmental Science, 981(2), 022098. https://doi.org/10.1088/1755-1315/981/2/022098 Search in Google Scholar

Contreras-Jodar, A., Nayan, N., Hamzaoui, S., Caja, G., & Salama, A. (2019). Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. Plos One, 14(2), e0202457. https://doi.org/10.1371/journal.pone.0202457 Search in Google Scholar

Contreras-Jodar, A., Salama, A., Hamzaoui, S., Vailati-Riboni, M., Caja, G., & Loor, J. (2018). Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. Journal of Dairy Research, 85(4), 423–430. https://doi.org/10.1017/s0022029918000705 Search in Google Scholar

Hamzaoui, S., Caja, G., Such, X., Albanell, E., & Salama, A. (2020). Milk production and energetic metabolism of heat-stressed dairy goats supplemented with propylene glycol. Animals, 10(12), 2449. https://doi.org/10.3390/ani10122449 Search in Google Scholar

Evan, T., Carro, M., Yepes, J., Haro, A., Arbesú, L., Romero-Huelva, M., … & Molina-Alcaide, E. (2020). Effects of feeding multinutrient blocks including avocado pulp and peels to dairy goats on feed intake and milk yield and composition. Animals, 10(2), 194. https://doi.org/10.3390/ani10020194 Search in Google Scholar

Salama, A., Caja, G., Albanell, E., Such, X., Casals, R., & Plaixats, J. (2003). Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. Journal of Dairy Research, 70(1), 9–17. https://doi.org/10.1017/s0022029902005708 Search in Google Scholar

Ghavipanje, N., Nasri, M., Farhangfar, S., Ghiasi, S., & Vargas-Bello-Pérez, E. (2021). Regulation of nutritional metabolism in transition dairy goats: energy balance, liver activity, and insulin resistance in response to berberine supplementation. Animals, 11(8), 2236. https://doi.org/10.3390/ani11082236 Search in Google Scholar

Nguyen, T., Chaiyabutr, N., Chanpongsang, S., & Thammacharoen, S. (2017). Dietary cation and anion difference: effects on milk production and body fluid distribution in lactating dairy goats under tropical conditions. Animal Science Journal, 89(1), 105–113. https://doi.org/10.1111/asj.12897 Search in Google Scholar

Pereira, G., Neto, J., Gracindo, Â., Silva, Y., Difante, G., Gurgel, A., … & Lima, G. (2021). Replacement of grain maize with spineless cactus in the diet of dairy goats. Journal of Dairy Research, 88(2), 134–138. https://doi.org/10.1017/s0022029921000352 Search in Google Scholar

Bøe, K., Ehrlenbruch, R., & Andersen, I. (2011). The preference for water nipples vs. water bowls in dairy goats. Acta Veterinaria Scandinavica, 53(1). https://doi.org/10.1186/1751-0147-53-50 Search in Google Scholar

Hamzaoui, S., Salama, A., Albanell, E., Such, X., & Caja, G. (2013). Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. Journal of Dairy Science, 96(10), 6355–6365. https://doi.org/10.3168/jds.2013-6665 Search in Google Scholar

Scholtens, M., Lopez-Villalobos, N., Garrick, D., Blair, H., Lehnert, K., & Snell, R. (2019). Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in new zealand dairy goats. Animal Science Journal, 91(1). https://doi.org/10.1111/asj.13310 Search in Google Scholar

Xiong, J., Bao, J., Hu, W., Shang, M., & Zhang, L. (2023). Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.1044017 Search in Google Scholar

Lashmar, S., Visser, C., & Marle-Köster, E. (2016). Snp-based genetic diversity of south african commercial dairy and fiber goat breeds. Small Ruminant Research, 136, 65–71. https://doi.org/10.1016/j.smallrumres.2016.01.006 Search in Google Scholar

Anggraeni, A., Syifa, L., Sari, O., Ishak, A., & Sumantri, C. (2021). Polymorphism of csn1s1 (g.12164g>a) and csn2 (g.8913c>a) genes in pure and cross dairy goats. Bio Web of Conferences, 33, 02001. https://doi.org/10.1051/bioconf/20213302001 Search in Google Scholar

Mastrangelo, S., Sardina, M., Tolone, M., & Portolano, B. (2013). Genetic polymorphism at the csn1s1 gene in girgentana dairy goat breed. Animal Production Science, 53(5), 403. https://doi.org/10.1071/an12242 Search in Google Scholar

Wang, G., Pi, X., Ji, Z., Qin, Z., Hou, L., Chao, T., … & Wang, J. (2015). Investigation of the diversity and origins of chinese dairy goats via the mitochondrial dna d-loop. Journal of Animal Science, 93(3), 949. https://doi.org/10.2527/jas.2014-8420 Search in Google Scholar

McLaren, A., Mucha, S., Mrode, R., Coffey, M., & Conington, J. (2016). Genetic parameters of linear conformation type traits and their relationship with milk yield throughout lactation in mixed-breed dairy goats. Journal of Dairy Science, 99(7), 5516–5525. https://doi.org/10.3168/jds.2015-10269 Search in Google Scholar

Kahi, A. and Wasike, C. (2019). Dairy goat production in sub-saharan africa: current status, constraints and prospects for research and development. Asian-Australasian Journal of Animal Sciences, 32(8), 1266–1274. https://doi.org/10.5713/ajas.19.0377 Search in Google Scholar

Romero-Huelva, M., Ramírez-Fenosa, M., Planelles-González, R., García-Casado, P., & Molina-Alcaide, E. (2017). Can by-products replace conventional ingredients in concentrate of dairy goat diet?. Journal of Dairy Science, 100(6), 4500–4512. https://doi.org/10.3168/jds.2016-11766 Search in Google Scholar

Sejian, V., Silpa, M., Nair, M., Devaraj, C., Krishnan, G., Bagath, M., … & Bhatta, R. (2021). Heat stress and goat welfare: adaptation and production considerations. Animals, 11(4), 1021. https://doi.org/10.3390/ani11041021 Search in Google Scholar

Paskaš, S., Miocinovic, J., Vejnović, B., & Becskei, Z. (2019). The nutritional quality of feedstuffs used in dairy goat nutrition in vojvodina. Biotechnology in Animal Husbandry, 35(2), 163–178. https://doi.org/10.2298/bah1902163p Search in Google Scholar

Chilliard, Y. and Ferlay, A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction Nutrition Development, 44(5), 467–492. https://doi.org/10.1051/rnd:2004052 Search in Google Scholar

Min, B., Hart, S., Sahlu, T., & Satter, L. (2005). The effect of diets on milk production and composition, and on lactation curves in pastured dairy goats. Journal of Dairy Science, 88(7), 2604–2615. https://doi.org/10.3168/jds.s0022-0302(05)72937-4 Search in Google Scholar

Bonanno, A., Grigoli, A., Montalbano, M., Bellina, V., Mazza, F., & Todaro, M. (2013). Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αs1-casein synthesis. European Food Research and Technology, 237(6), 951–963. https://doi.org/10.1007/s00217-013-2069-8 Search in Google Scholar

Wu, Z., Yang, X., Zhang, J., Wang, W., Liu, D., Hou, B., … & Xia, Y. (2023). Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1147685 Search in Google Scholar

Ghaffari, M., Tahmasbi, A., Khorvash, M., Naserian, A., & Vakili, A. (2013). Effects of pistachio by-products in replacement of alfalfa hay on ruminal fermentation, blood metabolites, and milk fatty acid composition in saanen dairy goats fed a diet containing fish oil. Journal of Applied Animal Research, 42(2), 186–193. https://doi.org/10.1080/09712119.2013.824889 Search in Google Scholar

Muelas, R., Monllor, P., Romero, G., Sayas-Barberá, E., Navarro, C., Díaz, J., … & Sendra, E. (2017). Milk technological properties as affected by including artichoke by-products silages in the diet of dairy goats. Foods, 6(12), 112. https://doi.org/10.3390/foods6120112 Search in Google Scholar

Chen, L., Bagnicka, E., Chen, H., & Shu, G. (2023). Health potential of fermented goat dairy products: composition comparison with fermented cow milk, probiotics selection, health benefits and mechanisms. Food & Function, 14(8), 3423–3436. https://doi.org/10.1039/d3fo00413a Search in Google Scholar

Levesque, J., Dion, S., Rico, D., Brassard, M., Gervais, R., & Chouinard, P. (2022). Milk yield and composition in dairy goats fed extruded flaxseed or a high-palmitic acid fat supplement. Journal of Dairy Research, 89(4), 355–366. https://doi.org/10.1017/s0022029922000784 Search in Google Scholar

Chilliard, Y., Ferlay, A., Rouel, J., & Lamberet, G. (2003). A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science, 86(5), 1751–1770. https://doi.org/10.3168/jds.s0022-0302(03)73761-8 Search in Google Scholar

Gebereyowhans, S. (2023). Inclusion of microalgae in the caprine diet improves nutritional profile of milk and its camembert cheese. International Journal of Dairy Technology, 76(4), 801–812. https://doi.org/10.1111/1471-0307.12994 Search in Google Scholar

Miroshina, T. and Chalova, N. (2023). Dairy goat breeding in russia and the world (review). E3s Web of Conferences, 380, 01004. https://doi.org/10.1051/e3sconf/202338001004 Search in Google Scholar

Musco, N., Morittu, V., Mastellone, V., Spina, A., Vassalotti, G., D’Aniello, B., … & Lombardi, P. (2021). Effects of ecotrofin™ on milk yield, milk quality and serum biochemistry in lactating goats. Journal of Animal Physiology and Animal Nutrition, 105(S1), 26–33. https://doi.org/10.1111/jpn.13592 Search in Google Scholar

Drackley, J. and Cardoso, F. (2014). Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined tmr systems. Animal, 8, 5–14. https://doi.org/10.1017/s1751731114000731 Search in Google Scholar

Broderick, G. (2018). Review: optimizing ruminant conversion of feed protein to human food protein. Animal, 12(8), 1722–1734. https://doi.org/10.1017/s1751731117002592 Search in Google Scholar

Aguilera, J., Prieto, C., & Fonolla, J. (1990). Protein and energy metabolism of lactating granadina goats. British Journal of Nutrition, 63(2), 165–175. https://doi.org/10.1079/bjn19900104 Search in Google Scholar

Ghavipanje, N., Nasri, M., Farhangfar, S., Ghiasi, S., & Vargas-Bello-Pérez, E. (2021). Regulation of nutritional metabolism in transition dairy goats: energy balance, liver activity, and insulin resistance in response to berberine supplementation. Animals, 11(8), 2236. https://doi.org/10.3390/ani11082236 Search in Google Scholar

Berthel, R., Simmler, M., Dohme-Meier, F., & Keil, N. (2022). Dairy sheep and goats prefer the single components over the mixed ration. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.1017669 Search in Google Scholar

Binggeli, S., Lapierre, H., Charbonneau, E., Ouellet, D., & Pellerin, D. (2021). Economic and environmental effects of revised metabolizable protein and amino acid recommendations on canadian dairy farms. Journal of Dairy Science, 104(9), 9981–9998. https://doi.org/10.3168/jds.2020-19893 Search in Google Scholar

Fadul-Pacheco, L., Pellerin, D., Chouinard, P., Wattiaux, M., Duplessis, M., & Charbonneau, E. (2017). Nitrogen efficiency of eastern canadian dairy herds: effect on production performance and farm profitability. Journal of Dairy Science, 100(8), 6592–6601. https://doi.org/10.3168/jds.2016-11788 Search in Google Scholar

Hassan, F., Arshad, M., Li, M., Rehman, M., Loor, J., & Huang, J. (2020). Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects. Animals, 10(11), 2076. https://doi.org/10.3390/ani10112076 Search in Google Scholar

Yang, W., Beauchemin, K., & Rode, L. (1999). Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science, 82(2), 391–403. https://doi.org/10.3168/jds.s0022-0302(99)75245-8 Search in Google Scholar

Romero-Huelva, M., Ramos-Morales, E., & Molina-Alcaide, E. (2012). Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. Journal of Dairy Science, 95(10), 6015–6026. https://doi.org/10.3168/jds.2012-5573 Search in Google Scholar

Molina-Alcaide, E., Morales-García, Y., Martín-García, A., Salem, H., Nefzaoui, A., & Sanz-Sampelayo, M. (2010). Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial n flow, and milk yield and composition in goats. Journal of Dairy Science, 93(5), 2076–2087. https://doi.org/10.3168/jds.2009-2628 Search in Google Scholar

Zhu, W., Xu, W., Wei, C., Zhang, Z., Jiang, C., & Chen, X. (2020). Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids (capra. hircus). Animals, 10(1), 151. https://doi.org/10.3390/ani10010151 Search in Google Scholar

Patil, P., Gendley, M., Dubey, M., Dhok, A., Gade, N., & Khune, V. (2023). Effect of feeding gram straw-based complete feed pellets on the performance, nutrient utilization and rumen fermentation of goats. Asian Journal of Dairy and Food Research, (Of). https://doi.org/10.18805/ajdfr.dr-2031 Search in Google Scholar

Chanjula, P., Pakdeechanuan, P., & Wattanasit, S. (2014). Effects of dietary crude glycerin supplementation on nutrient digestibility, ruminal fermentation, blood metabolites, and nitrogen balance of goats. Asian-Australasian Journal of Animal Sciences, 27(3), 365–374. https://doi.org/10.5713/ajas.2013.13494 Search in Google Scholar

Hassanein, H., Maggiolino, A., El-Fadel, M., Palo, P., El-Sanafawy, H., Hussein, A., … & Salem, A. (2023). Inclusion of azolla pinnata as an unconventional feed of zaraibi dairy goats, and effects on milk production and offspring performance. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1101424 Search in Google Scholar

El-Sanafawy, H., Maggiolino, A., El-Esawy, G., Riad, W., Zeineldin, M., Abdelmegeid, M., … & Salem, A. (2023). Effect of mango seeds as an untraditional source of energy on the productive performance of dairy damascus goats. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1058915 Search in Google Scholar

Mekuriaw, S., Tsunekawa, A., Ichinohe, T., Tegegne, F., Haregeweyn, N., Kobayashi, N., … & Fievez, V. (2020). Effect of feeding improved grass hays and eragrostis tef straw silage on milk yield, nitrogen utilization, and methane emission of lactating fogera dairy cows in ethiopia. Animals, 10(6), 1021. https://doi.org/10.3390/ani10061021 Search in Google Scholar

Moreno-Fernandez, J., López-Aliaga, I., García-Burgos, M., Alférez, M., & Díaz-Castro, J. (2019). Fermented goat milk consumption enhances brain molecular functions during iron deficiency anemia recovery. Nutrients, 11(10), 2394. https://doi.org/10.3390/nu11102394 Search in Google Scholar

Nestares, T., Barrionuevo, M., Díaz-Castro, J., López-Aliaga, I., Alferez, M., & Campos, M. (2008). Calcium-enriched goats’ milk aids recovery of iron status better than calcium-enriched cows’ milk, in rats with nutritional ferropenic anaemia. Journal of Dairy Research, 75(2), 153–159. https://doi.org/10.1017/s0022029908003178 Search in Google Scholar

Sánchez, J., Montes, P., Jiménez, A., & Andrés, S. (2007). Prevention of clinical mastitis with barium selenate in dairy goats from a selenium-deficient area. Journal of Dairy Science, 90(5), 2350–2354. https://doi.org/10.3168/jds.2006-616 Search in Google Scholar

Almeida, V., Lima, T., Filho, G., Bom, H., Fonseca, S., Evêncio-Neto, J., … & Mendonça, F. (2022). Copper deficiency in dairy goats and kids. Pesquisa Veterinária Brasileira, 42. https://doi.org/10.1590/1678-5150-pvb-7162 Search in Google Scholar

Medeiros, E., Queiroga, R., Oliveira, M., Medeiros, A., Sabedot, M., Bomfim, M., … & Madruga, M. (2014). Fatty acid profile of cheese from dairy goats fed a diet enriched with castor, sesame and faveleira vegetable oils. Molecules, 19(1), 992–1003. https://doi.org/10.3390/molecules19010992 Search in Google Scholar

Yuniarti, E., Evvyernie, D., & Astuti, D. (2015). Production and energy partition of lactating dairy goats fed rations containing date fruit waste. Media Peternakan, 39(1), 27–33. https://doi.org/10.5398/medpet.2016.39.1.27 Search in Google Scholar

Thoh, D., Pakdeechanuan, P., & Chanjula, P. (2017). Effect of supplementary glycerin on milk composition and heat stability in dairy goats. Asian-Australasian Journal of Animal Sciences, 30(12), 1711–1717. https://doi.org/10.5713/ajas.17.0066 Search in Google Scholar

Noor, M., Rusli, N., Mat, K., Hasnita, C., & Mira, P. (2020). Milk composition and milk quality of saanen crossbreed goats supplemented by mineral blocks. Tropical Animal Science Journal, 43(2), 169–175. https://doi.org/10.5398/tasj.2020.43.2.169 Search in Google Scholar

Foksowicz-Flaczyk, J., Wójtowski, J., Dankow, R., Mikołajczak, P., Pikul, J., Gryszczyńska, A., … & Stanisławski, D. (2022). The effect of herbal feed additives in the diet of dairy goats on intestinal lactic acid bacteria (lab) count. Animals, 12(3), 255. https://doi.org/10.3390/ani12030255 Search in Google Scholar

Salama, A., Caja, G., Albanell, E., Such, X., Casals, R., & Plaixats, J. (2003). Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. Journal of Dairy Research, 70(1), 9–17. https://doi.org/10.1017/s0022029902005708 Search in Google Scholar

Chang, G., Yan, J., Ma, N., Liu, X., Dai, H., Bilal, M., … & Shen, X. (2018). Dietary sodium butyrate supplementation reduces high-concentrate diet feeding-induced apoptosis in mammary cells in dairy goats. Journal of Agricultural and Food Chemistry, 66(9), 2101–2107. https://doi.org/10.1021/acs.jafc.7b05882 Search in Google Scholar

Nudda, A., Cannas, A., Correddu, F., Atzori, A., Lunesu, M., Battacone, G., … & Pulina, G. (2020). Sheep and goats respond differently to feeding strategies directed to improve the fatty acid profile of milk fat. Animals, 10(8), 1290. https://doi.org/10.3390/ani10081290 Search in Google Scholar

Mehaba, N., Salama, A., Such, X., Albanell, E., & Caja, G. (2019). Lactational responses of heat-stressed dairy goats to dietary l-carnitine supplementation. Animals, 9(8), 567. https://doi.org/10.3390/ani9080567 Search in Google Scholar

Liang, J. and Paengkoum, P. (2019). Current status, challenges and the way forward for dairy goat production in asia – conference summary of dairy goats in asia. Asian-Australasian Journal of Animal Sciences, 32(8), 1233–1243. https://doi.org/10.5713/ajas.19.0272 Search in Google Scholar

Battini, M., Barbieri, S., Vieira, A., Stilwell, G., & Mattiello, S. (2016). Results of testing the prototype of the awin welfare assessment protocol for dairy goats in 30 intensive farms in northern italy. Italian Journal of Animal Science, 15(2), 283–293. https://doi.org/10.1080/1828051x.2016.1150795 Search in Google Scholar

Goetsch, A. (2019). Recent advances in the feeding and nutrition of dairy goats. Asian-Australasian Journal of Animal Sciences, 32(8), 1296–1305. https://doi.org/10.5713/ajas.19.0255 Search in Google Scholar

Gheorghe-Irimia, R. A., Tăpăloagă, D., Tăpăloagă, P. R., Ilie, L. I., Șonea, C., Serban, A. I. (2022). Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods, 11(22), 3666. Search in Google Scholar

Tudor, L., Pițuru, M. T., Gheorghe-Irimia, R. A., Șonea, C., & Tăpăloagă, D. (2023). Optimizing milk production, quality and safety through essential oil applications. Farmacia, 71(5) Search in Google Scholar

Irimia, R. A., Georgescu, M., Tudoreanu, L., & Militaru, M. (2020). Testing The Effect Of Nigella Sativa Essential Oil Solution On Chicken Breast pH And Total Volatile Base Nitrogen During Refrigeration. Scientific Works. Series C, Veterinary Medicine, 66(2). Search in Google Scholar

eISSN:
2537-3137
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Architektur und Design, Landschaftsarchitektur, Gärten, Landschaften, Biologie, Biotechnologie, Botanik, Ökologie