This work is licensed under the Creative Commons Attribution 4.0 International License.
Badea I, Verrall R, Baca-Estrada M, et al. In vivo cutaneous interferon-γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexes. J Gene Med. 2005;7:1200–1214.BadeaIVerrallRBaca-EstradaMIn vivo cutaneous interferon-γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexesJ Gene Med.2005712001214Search in Google Scholar
Barreleiro PCA, Lindman B. The Kinetics of DNA–Cationic Vesicle Complex Formation. J Phys Chem B. 2003;107:6208–6213.BarreleiroPCALindmanBThe Kinetics of DNA–Cationic Vesicle Complex FormationJ Phys Chem B.200310762086213Search in Google Scholar
Bloomfield VA. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolymers. 1991;31:1471–1481.BloomfieldVACondensation of DNA by multivalent cations: Considerations on mechanismBiopolymers.19913114711481Search in Google Scholar
Bose RJ, Arai Y, Ahn JC, Park H, Lee S-H. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery. Int J Nanomedicine. 2015;10:5367–5382.BoseRJAraiYAhnJCParkHLeeS-HInfluence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene deliveryInt J Nanomedicine.20151053675382Search in Google Scholar
Büning H. Gene therapy enters the pharma market: The short story of a long journey. EMBO Mol Med. 2013;5:1–3.BüningHGene therapy enters the pharma market: The short story of a long journeyEMBO Mol Med.2013513Search in Google Scholar
Caracciolo G, Marchini C, Pozzi D, et al. Structural Stability against Disintegration by Anionic Lipids Rationalizes the Efficiency of Cationic Liposome/DNA Complexes. Langmuir. 2007;23:4498.CaraccioloGMarchiniCPozziDStructural Stability against Disintegration by Anionic Lipids Rationalizes the Efficiency of Cationic Liposome/DNA ComplexesLangmuir.2007234498Search in Google Scholar
Chancellor D, Barrett D, Nguyen-Jatkoe L, Millington S, Eckhardt F. The state of cell and gene therapy in 2023. Mol Ther. 2023;31:3376–3388.ChancellorDBarrettDNguyen-JatkoeLMillingtonSEckhardtFThe state of cell and gene therapy in 2023Mol Ther.20233133763388Search in Google Scholar
Coelho F, Botelho C, Paris JL, Marques EF, Silva BFB. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. J Mol Liq. 2021;344:117930.CoelhoFBotelhoCParisJLMarquesEFSilvaBFBInfluence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexesJ Mol Liq.2021344117930Search in Google Scholar
Dias R, Mel'nikov S, Lindman B, Miguel MG. DNA Phase Behavior in the Presence of Oppositely Charged Surfactants. Langmuir. 2000;16:9577–9583.DiasRMel'nikovSLindmanBMiguelMGDNA Phase Behavior in the Presence of Oppositely Charged SurfactantsLangmuir.20001695779583Search in Google Scholar
Durymanov M, Reineke J. Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Front Pharmacol. 2018;9:DurymanovMReinekeJNon-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular BarriersFront Pharmacol.20189Search in Google Scholar
Eastman SJ, Siegel C, Tousignant J, et al. Biophysical characterization of cationic lipid:DNA complexes. Biochim Biophys Acta BBA - Biomembr. 1997;1325:41–62.EastmanSJSiegelCTousignantJBiophysical characterization of cationic lipid:DNA complexesBiochim Biophys Acta BBA - Biomembr.199713254162Search in Google Scholar
Even-Chen S, Cohen R, Barenholz Y. Factors affecting DNA binding and stability of association to cationic liposomes. Chem Phys Lipids. 2012;165:414–423.Even-ChenSCohenRBarenholzYFactors affecting DNA binding and stability of association to cationic liposomesChem Phys Lipids.2012165414423Search in Google Scholar
Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987;84:7413–7417.FelgnerPLGadekTRHolmMLipofection: a highly efficient, lipid-mediated DNA-transfection procedureProc Natl Acad Sci U S A.19878474137417Search in Google Scholar
Flock S, Labarbe R, Houssier C. Dielectric constant and ionic strength effects on DNA precipitation. Biophys J. 1996;70:1456–1465.FlockSLabarbeRHoussierCDielectric constant and ionic strength effects on DNA precipitationBiophys J.19967014561465Search in Google Scholar
Francescangeli O, Stanic V, Gobbi L, et al. Structure of self-assembled liposome-DNA-metal complexes. Phys Rev E. 2003;67:011904.FrancescangeliOStanicVGobbiLStructure of self-assembled liposome-DNA-metal complexesPhys Rev E.200367011904Search in Google Scholar
Galyuk EN, Wartell RM, Dosin YM, Lando DY. DNA denaturation under freezing in alkaline medium. J Biomol Struct Dyn. 2009;26:517–523.GalyukENWartellRMDosinYMLandoDYDNA denaturation under freezing in alkaline mediumJ Biomol Struct Dyn.200926517523Search in Google Scholar
Gu J, Xu Z, Liu Q, et al. Building a Better Silver Bullet: Current Status and Perspectives of Non-Viral Vectors for mRNA Vaccines. Adv Healthc Mater. 2024;13:2302409.GuJXuZLiuQBuilding a Better Silver Bullet: Current Status and Perspectives of Non-Viral Vectors for mRNA VaccinesAdv Healthc Mater.2024132302409Search in Google Scholar
Han X, Zhang H, Butowska K, et al. An ionizable lipid toolbox for RNA delivery. Nat Commun. 2021;12:7233.HanXZhangHButowskaKAn ionizable lipid toolbox for RNA deliveryNat Commun.2021127233Search in Google Scholar
Harries D, May S, Ben-Shaul A. Counterion release in membrane-biopolymer interactions. Soft Matter. 2013;9:9268–9284.HarriesDMaySBen-ShaulACounterion release in membrane-biopolymer interactionsSoft Matter.2013992689284Search in Google Scholar
Hirsch-Lerner D, Zhang M, Eliyahu H, et al. Effect of “helper lipid” on lipoplex electrostatics. Biochim Biophys Acta. 2005;1714:71–84.Hirsch-LernerDZhangMEliyahuHEffect of “helper lipid” on lipoplex electrostaticsBiochim Biophys Acta.200517147184Search in Google Scholar
Huang TC, Toraya H, Blanton TN, Wu Y. X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J Appl Crystallogr. 1993;26:180–184.HuangTCTorayaHBlantonTNWuYX-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standardJ Appl Crystallogr.199326180184Search in Google Scholar
Hubčík L, Pullmannová P, Funari SS, Devínsky F, Uhríková D. DNA – DOPC – gemini surfactants complexes: effect of ionic strength. Eur Pharm J. 2014;61:26–34.HubčíkLPullmannováPFunariSSDevínskyFUhríkováDDNA – DOPC – gemini surfactants complexes: effect of ionic strengthEur Pharm J.2014612634Search in Google Scholar
Hubčík L, Galliková D, Pullmannová P, et al. DNA-DOPE-gemini surfactants complexes at low surface charge density: from structure to transfection efficiency. Gen Physiol Biophys. 2018;37:57–69.HubčíkLGallikováDPullmannováPDNA-DOPE-gemini surfactants complexes at low surface charge density: from structure to transfection efficiencyGen Physiol Biophys.2018375769Search in Google Scholar
Izumrudov VA, Zhiryakova MV, Goulko AA. Ethidium Bromide as a Promising Probe for Studying DNA Interaction with Cationic Amphiphiles and Stability of the Resulting Complexes. Langmuir. 2002;18:10348–10356.IzumrudovVAZhiryakovaMVGoulkoAAEthidium Bromide as a Promising Probe for Studying DNA Interaction with Cationic Amphiphiles and Stability of the Resulting ComplexesLangmuir.2002181034810356Search in Google Scholar
Jing D, Zhang J, Ma L, Zhang G. Phase behavior of DNA in the presence of cetyltrimethylammonium bromide / alkyl polyglucoside surfactant mixture. Colloid Polym Sci. 2004;282:1089–1096.JingDZhangJMaLZhangGPhase behavior of DNA in the presence of cetyltrimethylammonium bromide / alkyl polyglucoside surfactant mixtureColloid Polym Sci.200428210891096Search in Google Scholar
Kas'yanenko NA. Conformational changes of DNA molecules in interactions with bioactive compounds. I. Influence of metal ions on the conformation of DNA molecules in solution. J Struct Chem. 2006;47:163–169.Kas'yanenkoNAConformational changes of DNA molecules in interactions with bioactive compounds. I. Influence of metal ions on the conformation of DNA molecules in solutionJ Struct Chem.200647163169Search in Google Scholar
Kawashima T, Sasaki A, Sasaki S. Transition of Nanostructure in DNA–Cationic Surfactant Complexes with the Added Salt. Biomacromolecules. 2006;7:1942–1950.KawashimaTSasakiASasakiSTransition of Nanostructure in DNA–Cationic Surfactant Complexes with the Added SaltBiomacromolecules.2006719421950Search in Google Scholar
Khan M, Ang CY, Wiradharma N, et al. Diaminododecane-based cationic bolaamphiphile as a non-viral gene delivery carrier. Biomaterials. 2012;33:4673–4680.KhanMAngCYWiradharmaNDiaminododecane-based cationic bolaamphiphile as a non-viral gene delivery carrierBiomaterials.20123346734680Search in Google Scholar
Kieffer J, Wright JP. PyFAI: a Python library for high performance azimuthal integration on GPU. Powder Diffr. 2013;28:S339–S350.KiefferJWrightJPPyFAI: a Python library for high performance azimuthal integration on GPUPowder Diffr.201328S339S350Search in Google Scholar
Kolašinac R, Jaksch S, Dreissen G, et al. Influence of Environmental Conditions on the Fusion of Cationic Liposomes with Living Mammalian Cells. Nanomaterials. 2019;9:KolašinacRJakschSDreissenGInfluence of Environmental Conditions on the Fusion of Cationic Liposomes with Living Mammalian CellsNanomaterials.20199Search in Google Scholar
Krajden M, Minor JM, Rifkin O, Comanor L. Effect of Multiple Freeze-Thaw Cycles on Hepatitis B Virus DNA and Hepatitis C Virus RNA Quantification as Measured with Branched-DNA Technology. J Clin Microbiol. 1999;37:1683–1686.KrajdenMMinorJMRifkinOComanorLEffect of Multiple Freeze-Thaw Cycles on Hepatitis B Virus DNA and Hepatitis C Virus RNA Quantification as Measured with Branched-DNA TechnologyJ Clin Microbiol.19993716831686Search in Google Scholar
Lengyel A, Uhríková D, Klacsová M, Balgavý P. DNA condensation and its thermal stability influenced by phospholipid bilayer and divalent cations. Colloids Surf B Biointerfaces. 2011;86:212–217.LengyelAUhríkováDKlacsováMBalgavýPDNA condensation and its thermal stability influenced by phospholipid bilayer and divalent cationsColloids Surf B Biointerfaces.201186212217Search in Google Scholar
Liskayová G, Hubčík L, Šišková K, et al. pH-sensitive N,N-(dimethyl)-N-alkanamine-N-oxides as gene delivery vectors. Chem Pap. 2017;71:1739–1748.LiskayováGHubčíkLŠiškováKpH-sensitive N,N-(dimethyl)-N-alkanamine-N-oxides as gene delivery vectorsChem Pap.20177117391748Search in Google Scholar
Liu C, Jiang Y, Xue W, et al. Janus dendritic ionizable lipids with fine designed headgroup and tails to improve mRNA delivery efficiency. Bioorg Med Chem. 2025;120:LiuCJiangYXueWJanus dendritic ionizable lipids with fine designed headgroup and tails to improve mRNA delivery efficiencyBioorg Med Chem.2025120Search in Google Scholar
Madeira C, Loura LM, Prieto M, Fedorov A, Aires-Barros MR. Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET. BMC Biotechnol. 2008;8:20.MadeiraCLouraLMPrietoMFedorovAAires-BarrosMREffect of ionic strength and presence of serum on lipoplexes structure monitorized by FRETBMC Biotechnol.2008820Search in Google Scholar
Manning GS. The response of DNA length and twist to changes in ionic strength. Biopolymers. 2015;103:223–226.ManningGSThe response of DNA length and twist to changes in ionic strengthBiopolymers.2015103223226Search in Google Scholar
Marchetti S, Onori G, Cametti C. Calorimetric and Dynamic Light-Scattering Investigation of Cationic Surfactant–DNA Complexes. J Phys Chem B. 2006;110:24761–24765.MarchettiSOnoriGCamettiCCalorimetric and Dynamic Light-Scattering Investigation of Cationic Surfactant–DNA ComplexesJ Phys Chem B.20061102476124765Search in Google Scholar
Mel'nikova YS, Lindman B. pH-Controlled DNA Condensation in the Presence of Dodecyldimethylamine Oxide. Langmuir. 2000;16:5871–5878.Mel'nikovaYSLindmanBpH-Controlled DNA Condensation in the Presence of Dodecyldimethylamine OxideLangmuir.20001658715878Search in Google Scholar
Muñoz-Úbeda M, Misra SK, Barrán-Berdón AL, et al. Why Is Less Cationic Lipid Required To Prepare Lipoplexes from Plasmid DNA than Linear DNA in Gene Therapy? J Am Chem Soc. 2011;133:18014–18017.Muñoz-ÚbedaMMisraSKBarrán-BerdónALWhy Is Less Cationic Lipid Required To Prepare Lipoplexes from Plasmid DNA than Linear DNA in Gene Therapy?J Am Chem Soc.20111331801418017Search in Google Scholar
Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000;1469:159–195.NagleJFTristram-NagleSStructure of lipid bilayersBiochim Biophys Acta.20001469159195Search in Google Scholar
Nakanishi H, Tsuchiya K, Okubo T, Sakai H, Abe M. Cationic Surfactant Changes the Morphology of DNA Molecules. Langmuir. 2007;23:345–347.NakanishiHTsuchiyaKOkuboTSakaiHAbeMCationic Surfactant Changes the Morphology of DNA MoleculesLangmuir.200723345347Search in Google Scholar
Nie X, Zhang Z, Wang C-H, et al. Interactions in DNA Condensation: An Important Factor for Improving the Efficacy of Gene Transfection. Bioconjug Chem. 2019;30:284–292.NieXZhangZWangC-HInteractions in DNA Condensation: An Important Factor for Improving the Efficacy of Gene TransfectionBioconjug Chem.201930284292Search in Google Scholar
Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev. 2015;115:10938–10966.PattniBSChupinVVTorchilinVPNew Developments in Liposomal Drug DeliveryChem Rev.20151151093810966Search in Google Scholar
Perrone S, Usai M, Lazzari P, et al. Efficient Cell Transfection with Melamine-Based Gemini Surfactants. Bioconjug Chem. 2013;24:176–187.PerroneSUsaiMLazzariPEfficient Cell Transfection with Melamine-Based Gemini SurfactantsBioconjug Chem.201324176187Search in Google Scholar
Pinnaduwage P, Schmitt L, Huang L. Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochim Biophys Acta BBA - Biomembr. 1989;985:33–37.PinnaduwagePSchmittLHuangLUse of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cellsBiochim Biophys Acta BBA - Biomembr.19899853337Search in Google Scholar
Pullmannová P, Bastos M, Bai G, et al. The ionic strength effect on the DNA complexation by DOPC — gemini surfactants liposomes. Biophys Chem. 2012;160:35–45.PullmannováPBastosMBaiGThe ionic strength effect on the DNA complexation by DOPC — gemini surfactants liposomesBiophys Chem.20121603545Search in Google Scholar
Rädler JO, Koltover I, Salditt T, Safinya CR. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997;275:810–814.RädlerJOKoltoverISaldittTSafinyaCRStructure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimesScience.1997275810814Search in Google Scholar
Ramamoorth M, Narvekar A. Non Viral Vectors in Gene Therapy-An Overview. J Clin Diagn Res JCDR. 2015;9:GE01–GE06.RamamoorthMNarvekarANon Viral Vectors in Gene Therapy-An OverviewJ Clin Diagn Res JCDR.20159GE01GE06Search in Google Scholar
Rodríguez-Pulido A, Aicart E, Junquera E. Electrochemical and Spectroscopic Study of Octadecyltrimethylammonium Bromide/DNA Surfoplexes. Langmuir. 2009;25:4402–4411.Rodríguez-PulidoAAicartEJunqueraEElectrochemical and Spectroscopic Study of Octadecyltrimethylammonium Bromide/DNA SurfoplexesLangmuir.20092544024411Search in Google Scholar
Rolland AP. From Genes to Gene Medicines: Recent Advances in Nonviral Gene Delivery. Crit Rev Ther Drug Carr Syst. 1998;15:RollandAPFrom Genes to Gene Medicines: Recent Advances in Nonviral Gene DeliveryCrit Rev Ther Drug Carr Syst.199815Search in Google Scholar
Ryhänen SJ, Säily MJ, Paukku T, et al. Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection. Biophys J. 2003;84:578–587.RyhänenSJSäilyMJPaukkuTSurface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based LipofectionBiophys J.200384578587Search in Google Scholar
Sharma J, Paschalis EI. The future of non-viral gene delivery for the treatment of inherited retinal diseases. Mol Ther - Nucleic Acids. 2022;30:354.SharmaJPaschalisEIThe future of non-viral gene delivery for the treatment of inherited retinal diseasesMol Ther - Nucleic Acids.202230354Search in Google Scholar
Siddiqui R, Shah RA, Akbar N, et al. Antibacterial effects of octadecyl trimethylammonium micelle–clay complex against bacterial eye pathogens: potential as a contact lens disinfectant. Int Ophthalmol. 2022;42:939–944.SiddiquiRShahRAAkbarNAntibacterial effects of octadecyl trimethylammonium micelle–clay complex against bacterial eye pathogens: potential as a contact lens disinfectantInt Ophthalmol.202242939944Search in Google Scholar
Silanteva IA, Komolkin AV, Mamontova VV, et al. Some Features of Surfactant Organization in DNA Solutions at Various NaCl Concentrations. ACS Omega. 2020;5:18234–18243.SilantevaIAKomolkinAVMamontovaVVSome Features of Surfactant Organization in DNA Solutions at Various NaCl ConcentrationsACS Omega.202051823418243Search in Google Scholar
Silva JPN, Oliveira ACN, Gomes AC, et al. Development of Dioctadecyldimethylammonium Bromide/Monoolein Liposomes for Gene Delivery. In Cell Interaction, IntechOpen; 2012.,p.SilvaJPNOliveiraACNGomesACDevelopment of Dioctadecyldimethylammonium Bromide/Monoolein Liposomes for Gene DeliveryIn Cell Interaction, IntechOpen2012p.Search in Google Scholar
Sung Y, Kim S. Recent advances in the development of gene delivery systems. Biomater Res. 2019;23:8.SungYKimSRecent advances in the development of gene delivery systemsBiomater Res.2019238Search in Google Scholar
Tassler S, Dobner B, Lampp L, et al. DNA Delivery Systems Based on Peptide-Mimicking Cationic Lipids—The Effect of the Co-Lipid on the Structure and DNA Binding Capacity. Langmuir. 2019;35:4613–4625.TasslerSDobnerBLamppLDNA Delivery Systems Based on Peptide-Mimicking Cationic Lipids—The Effect of the Co-Lipid on the Structure and DNA Binding CapacityLangmuir.20193546134625Search in Google Scholar
Trabelsi S, Albouy P-A, Impéror-Clerc M, Guillot S, Langevin D. X-ray diffraction study of the structure of carboxymethylcellulose-cationic surfactant complexes. Chemphyschem Eur J Chem Phys Phys Chem. 2007;8:2379–2385.TrabelsiSAlbouyP-AImpéror-ClercMGuillotSLangevinDX-ray diffraction study of the structure of carboxymethylcellulose-cationic surfactant complexesChemphyschem Eur J Chem Phys Phys Chem.2007823792385Search in Google Scholar
Uhríková D, Rapp G, Balgavý P. Condensed lamellar phase in ternary DNA–DLPC-cationic gemini surfactant system: a small-angle synchrotron X-ray diffraction study. Bioelectrochemistry. 2002;58:87–95.UhríkováDRappGBalgavýPCondensed lamellar phase in ternary DNA–DLPC-cationic gemini surfactant system: a small-angle synchrotron X-ray diffraction studyBioelectrochemistry.2002588795Search in Google Scholar
Uhríková D, Hanulová M, Funari SS, et al. The structure of DNA–DOPC aggregates formed in presence of calcium and magnesium ions: A small-angle synchrotron X-ray diffraction study. Biochim Biophys Acta BBA - Biomembr. 2005;1713:15–28.UhríkováDHanulováMFunariSSThe structure of DNA–DOPC aggregates formed in presence of calcium and magnesium ions: A small-angle synchrotron X-ray diffraction studyBiochim Biophys Acta BBA - Biomembr.200517131528Search in Google Scholar
Uhríková D, Lengyel A, Hanulová M, Funari SS, Balgavý P. The structural diversity of DNA-neutral phospholipids-divalent metal cations aggregates: a small-angle synchrotron X-ray diffraction study. Eur Biophys J EBJ. 2007;36:363–375.UhríkováDLengyelAHanulováMFunariSSBalgavýPThe structural diversity of DNA-neutral phospholipids-divalent metal cations aggregates: a small-angle synchrotron X-ray diffraction studyEur Biophys J EBJ.200736363375Search in Google Scholar
Uhríková D, Pullmannová P, Kučerka N, et al. The structural variety of DNA-DPPC-divalent metal cation aggregates: SAXD and SANS study. Eur Phys J Spec Top. 2009;167:191–197.UhríkováDPullmannováPKučerkaNThe structural variety of DNA-DPPC-divalent metal cation aggregates: SAXD and SANS studyEur Phys J Spec Top.2009167191197Search in Google Scholar
Vardevanyan PO, Antonyan AP, Manukyan GA, Karapetyan AT. Study of ethidium bromide interaction peculiarities with DNA. Exp Mol Med. 2001;33:205–208.VardevanyanPOAntonyanAPManukyanGAKarapetyanATStudy of ethidium bromide interaction peculiarities with DNAExp Mol Med.200133205208Search in Google Scholar
Vardevanyan PO, Antonyan AP, Parsadanyan MA, Torosyan MA, Karapetian AT. Joint interaction of ethidium bromide and methylene blue with DNA. The effect of ionic strength on binding thermodynamic parameters. J Biomol Struct Dyn. 2016;34:1377–1382.VardevanyanPOAntonyanAPParsadanyanMATorosyanMAKarapetianATJoint interaction of ethidium bromide and methylene blue with DNA. The effect of ionic strength on binding thermodynamic parametersJ Biomol Struct Dyn.20163413771382Search in Google Scholar
Wang Y, Dubin PL, Zhang H. Interaction of DNA with Cationic Micelles: Effects of Micelle Surface Charge Density, Micelle Shape, and Ionic Strength on Complexation and DNA Collapse. Langmuir. 2001;17:1670–1673.WangYDubinPLZhangHInteraction of DNA with Cationic Micelles: Effects of Micelle Surface Charge Density, Micelle Shape, and Ionic Strength on Complexation and DNA CollapseLangmuir.20011716701673Search in Google Scholar
Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release Off J Control Release Soc. 2006;116:255–264.WasunguLHoekstraDCationic lipids, lipoplexes and intracellular delivery of genesJ Control Release Off J Control Release Soc.2006116255264Search in Google Scholar
Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525:162–169.WirthTParkerNYlä-HerttualaSHistory of gene therapyGene.2013525162169Search in Google Scholar
Želinská K, Gallová J, Huláková S, Uhríková D, Ivankov O. Solubilisation of model membrane by DDAO surfactant - partitioning, permeabilisation and liposome-micelle transition. Gen Physiol Biophys. 2020;39:107–122.ŽelinskáKGallováJHulákováSUhríkováDIvankovOSolubilisation of model membrane by DDAO surfactant - partitioning, permeabilisation and liposome-micelle transitionGen Physiol Biophys.202039107122Search in Google Scholar
Zhang C, Ma Y, Zhang J, et al. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules. 2022;27:1943.ZhangCMaYZhangJModification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based ImmunotherapyMolecules.2022271943Search in Google Scholar
Zipper H, Brunner H, Bernhagen J, Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004;32:e103.ZipperHBrunnerHBernhagenJVitzthumFInvestigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implicationsNucleic Acids Res.200432e103Search in Google Scholar