Uneingeschränkter Zugang

Optimizing High-Performance Concrete Properties Containing Blast Furnace Slag and Marble Powder

, ,  und   
14. Sept. 2024

Zitieren
COVER HERUNTERLADEN

P.C. Aïtcin, J.M. Lessard, The composition and design of high-strength concrete and ultrahigh-strength concrete, Developments in the Formulation and Reinforcement of Concrete, Elsevier, 2019, pp. 171-192. Second Edition), Woodhead Publishing Series in Civil and Structural Engineering. Search in Google Scholar

E. Cerro-Prada, R. Pacheco-Torres, F. Varela, Effect of multi-walled carbon nanotubes on strength and electrical properties of cement mortar, Mater. 14 (2021) 79. Search in Google Scholar

A. Bahari, A. Sadeghi-Nik, F.U.A. Shaikh, A. Sadeghi-Nik, E. Cerro-Prada, E. Mirshafiei, M. Roodbari, Experimental studies on rheological, mechanical, and microstructure properties of self-compacting concrete containing perovskite nanomaterial, Struct. Concr. 23 (2022) 564-78. Search in Google Scholar

ACI 211.4R-08, Guide for selecting proportions for high-strength concrete using Portland cement and other cementitious materials, USA, 2008. Search in Google Scholar

A.K. Akhnoukh, Accelerated bridge construction projects using high performance concrete, Case Stud. Constr. Mater. 12 (2020) e00313. Search in Google Scholar

Z. Tang, W. Li, V.W.Y. Tam, C. Xue, Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials, Resour. Conserv. Recycl.: X. 6 (2020) 100036. Search in Google Scholar

B.S. Divsholi, T.Y.D. Lim, S. Teng, Durability properties and microstructure of ground granulated blast furnace slag cement concrete, Int. J. Concr. Struct. Mater. 8 (2014) 157-64. Search in Google Scholar

H. Beushausen, M. Alexander, Y. Ballim, Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios, Constr. Build. Mater. 29 (2012) 533-540. Search in Google Scholar

J.L. Wang, K.M. Niu, Z.F. Yang, M.K. Zhou, L.Q. Sun, G.J. Ke, Effects of fly ash and ground granulated blast-furnaces slag on properties of high-strength concrete, Key. Eng. Mater. 405-406 (2009) 219-25. Search in Google Scholar

S. Liu, Z. Wang, X. Li, Long-term properties of concrete containing ground granulated blast furnace slag and steel slag, Mag. Concr. Res. 66 (2014) 1095-103. Search in Google Scholar

H. Trong-Phuoc, S.H. Lanh, V.H. Quan, Experimental investigation on the performance of concrete incorporating fine dune sand and ground granulated blast-furnace slag, Constr. Build. Mater. 347 (2022) 128512. Search in Google Scholar

G. Pachideh, M. Gholhaki, Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag, J. Struct. Fire Eng. 11 (2020) 221-46. Search in Google Scholar

X-Y. Wang and H-S. Lee, Modeling the hydration of concrete incorporating fly ash or slag, Cem. Concr. Res. 40 (2010) 984-96. Search in Google Scholar

A.M. Mhaya, G.F. Huseien, A.R. Zainal Abidin, M. Ismail, Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes, Constr. Build. Mater. 256 (2020) 119505. Search in Google Scholar

P. Ganesh and A.R. Murthy, Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material, Constr. Build. Mater. 197 (2019) 667-80. Search in Google Scholar

J. Ahmad, R. Martínez-García, M. Szelag, J. de-Prado-Gil, R. Marzouki, M. Alqurashi, E.E. Hussein, Effects of steel fibers (SF) and ground granulated blast furnace slag (GGBS) on recycled aggregate concrete, Mater. 14 (2021) 7497. Search in Google Scholar

A.A. Ramezanianpour, A. Pilvar, M. Mahdikhani, F. Moodi, Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Constr. Build. Mater. 25 (2011) 2472-9. Search in Google Scholar

S. Srikanth, C.B.R. Krishna, T. Srikanth, K.J.N. Sai Nitesh, V. Swamy Nadh, S. Kumar, S. Thanappan, Effect of nano ground granulated blast furnace slag (GGBS) volume % on mechanical behaviour of high-performance sustainable concrete, J. Nanomater. 2022 (2022) 5 pages. https://doi.org/10.1155/2022/3742194. Search in Google Scholar

R.B. Oza, M.Z. Kangda, M.R. Agrawal, P.R. Vakharia, D.M. Solanki, Marble dust as a binding material in concrete: A review, Mater. Today Proc. 60 (2022) 421-430. Search in Google Scholar

K. Vardhan, R. Siddique, S. Goyal, Strength, permeation and micro-structural characteristics of concrete incorporating waste marble, Constr. Build. Mater. 203 (2019) 45-55. Search in Google Scholar

H. Hebhoub, H. Aoun, M. Belachia, H. Houari, E. Ghorbel, Use of waste marble aggregates in concrete, Constr. Build. Mater. 25 (2011) 1167-71. Search in Google Scholar

A. Ergün, Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Constr. Build. Mater. 25 (2011) 806-12. Search in Google Scholar

O. Boughamsa, H. Hebhoub, L. Kherref, M. Belachia, A. Abdelouahed, R. Chaher, Valorization of marble’s waste as a substitute in sand concrete, Adv. Concr. Constr. 9 (2020) 217-25. Search in Google Scholar

A. Chawla, K.I. Syed Ahmed Kabeer, A.K. Vyas, Evaluation of strength and durability of lean concrete mixes containing marble waste as fine aggregate, Eur. J. Environ. Civ. Eng. 24 (2020) 1398-413. Search in Google Scholar

A.A. Aliabdo, A.M.A. Elmoaty, E.M. Auda, Re-use of waste marble dust in the production of cement and concrete, Constr. Build. Mater. 50 (2014) 28-41. Search in Google Scholar

V. Kumar, S. Singla, R. Garg, Strength and microstructure correlation of binary cement blends in presence of waste marble powder. Mater. Today Proc. 43 (2021) 857-62. Search in Google Scholar

Y. Wang, J. Xiao, J. Zhang, Z. Duan, Mechanical behavior of concrete prepared with waste marble powder, Sustain. 14 (2022) 4170. Search in Google Scholar

H.Y. Aruntaş, M. Gürü, M. Dayı, İ. Tekin, Utilization of waste marble dust as an additive in cement production,Mater. Des.31(2010) 4039-42. Search in Google Scholar

V. Corinaldesi, G. Moriconi, T.R. Naik, Characterization of marble powder for its use in mortar and concrete,Constr. Build. Mater. 24(2010) 113-7. Search in Google Scholar

C. Karakurt and M. Dumangöz, Rheological and durability properties of self-compacting concrete produced using marble dust and blast furnace slag, Mater. 15 (2022) 1795. Search in Google Scholar

A. Yahia, K.H. Khayat, M. Sayed, Statistical modelling of the coupled effect of mix design and rebar spacing on restricted flow characteristics of SCC, Constr. Build. Mater. 37 (2012) 699-706. Search in Google Scholar

J. Goupy, L. Creighton, Introduction to design of experiments with JMP examples, 3rd ed., Cary (NC): SAS Institute, 2007, p. 438. Search in Google Scholar

J. Goupy, La méthode des plans d’expérience, [The experience plans method], Dunod, Paris, 1988. Search in Google Scholar

T. Hadji, S. Guettala, M. Quéneudec, Mix design of high performance concrete with different mineral additions, World J. Eng. 18 (2021) 767-79. Search in Google Scholar

H. Ben Salah, B. Dalila, T. Bachir, Using a mixture design method to optimize the behavior of high-performance sand concrete, World J. Eng. 20 (2023) 877-87. Search in Google Scholar

R.H. Bogue, in: Chemistry of Portland cement, 2nd ed., Reinhold Publishing Corp, New York (NY), 1955, p. 790. Search in Google Scholar

R. Chaid, R. Jauberthie, J. Zeghiche, F. Kherchi, Impact de la poudre de marbre conjuguée au calcaire du CEM II sur la durabilité du béton, Eur. J. Environ. Civ. Eng. 15 (2011) 427-45. Search in Google Scholar

K. Arroudj, A. Zenati, M.N. Oudjit, A. Bali, A. Tagnit-Hamou, Reactivity of fine quartz in presence of silica fume and slag, Engineering. 3 (2011) 569-76. Search in Google Scholar

J. Goupy, Les plans d’experiences [Design of experiments]. France: Revue MODULAD, Numero 34. 2006. Search in Google Scholar

ACI 211.1-91, Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute, Farmington Hills, Michigan, 1991. Search in Google Scholar

G. Dreux, Concretes composition, Techniques de l’Ingenieur 2 (1982) 220. Search in Google Scholar

NF P 18-451, Fresh concrete, cone slump tests, French standards, France, 1981. Search in Google Scholar

NF EN 12390-3, Essais pour béton durci - Partie 3: résistance à la compression des éprouvettes [Tests for hardened concrete - Part 3: compressive strength of the samples], France, 2012. Search in Google Scholar

B. Mezghiche, Laboratory Testing of Construction Materials, Publication Universitaire Biskra, Algerie, 2005, p. 120. Search in Google Scholar

NF P 18-459, Concrete - Testing hardened: testing porosity and density, French standards, France, 2010. Search in Google Scholar

A. Rana, P. Kalla, L.J. Csetenyi, Sustainable use of marble slurry in concrete, J. Clean. Prod. 94 (2015) 304-11. Search in Google Scholar

B. Toufik, B. Bensaid, A. Kheireddine, E. Karim, K. El-Hadj, Prediction of the durability performance of ternary cement containing limestone powder and ground granulated blast furnace slag, Constr. Build. Mater. 209 (2019) 215-21. Search in Google Scholar

B. Liu, G. Luo, Y. Xie, Effect of curing conditions on the permeability of concrete with high volume mineral admixtures, Constr. Build. Mater. 167 (2018) 359-71. Search in Google Scholar

R.K. Majhi, A.N. Nayak, Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator, J. Clean. Prod. 255 (2020) 120188. Search in Google Scholar

M.A. Rashwan, T.M. Al - Basiony, A.O. Mashaly, M.M. Khalil, Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement, J. Build. Eng. 32 (2020), 101697. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien