Uneingeschränkter Zugang

Numerical Investigation of Indentation-Induced Residual Stresses and their Effect on J-Integral and Crack Propagation


Zitieren

S.M. Walley, Historical origins of indentation hardness testing, Mater. Sci. Technol. (United Kingdom). 28 (2012) 1028–1044. https://doi.org/10.1179/1743284711Y.0000000127. Search in Google Scholar

S. Arunkumar, A Review of Indentation Theory, Mater. Today Proc. 5 (2018) 23664–23673. https://doi.org/10.1016/j.matpr.2018.10.156. Search in Google Scholar

G.D. Quinn, R.C. Bradt, On the Vickers Indentation Fracture Toughness Test, 680 (2007) 673–680. https://doi.org/10.1111/j.1551-2916.2006.01482.x. Search in Google Scholar

N. Ogasawara, N. Chiba, X. Chen, Measuring the plastic properties of bulk materials by single indentation test, 54 (2006) 65–70. https://doi.org/10.1016/j.scriptamat.2005.09.009. Search in Google Scholar

J. Hay, Introduction to instrumented indentation testing, Exp. Tech. 33 (2009) 66–72. Search in Google Scholar

T. Nakamura, T. Wang, S. Sampath, Determination of properties of graded materials by inverse analysis and instrumented indentation, Acta Mater. 48 (2000) 4293–4306. https://doi.org/10.1016/S1359-6454(00)00217-2. Search in Google Scholar

H. Wang, L. Zhu, B. Xu, Residual Stresses and Nanoindentation Testing of Films and Coatings, Residual Stress. Nanoindentation Test. Film. Coatings. (2018) 21–36. https://doi.org/10.1007/978-981-10-7841-5. Search in Google Scholar

J. Fu, S. Kamali-Bernard, F. Bernard, M. Cornen, Comparison of mechanical properties of C-S-H and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques, Compos. Part B Eng. 151 (2018) 127–138. https://doi.org/10.1016/j.compositesb.2018.05.043. Search in Google Scholar

A. Alhasanyah, T.K. Vaidyanathan, R.J. Flinton, Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns, J. Prosthodont. 22 (2013) 383–390. https://doi.org/10.1111/jopr.12016. Search in Google Scholar

W.K. Lim, J.H. Song, B. V. Sankar, Effect of ring indentation on fatigue crack growth in an aluminum plate, Int. J. Fatigue. 25 (2003) 1271–1277. https://doi.org/10.1016/j.ijfatigue.2003.08.011. Search in Google Scholar

T.W. Clyne, J.E. Campbell, M. Burley, J. Dean, Profilometry-Based Inverse Finite Element Method Indentation Plastometry, Adv. Eng. Mater. 23 (2021). https://doi.org/10.1002/adem.202100437. Search in Google Scholar

N. Razavi, M.R. Ayatollahi, A. Amouzadi, F. Berto, Effects of different indentation methods on fatigue life extension of cracked specimens, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 287–299. https://doi.org/10.1111/ffe.12678. Search in Google Scholar

R. Růžek, J. Pavlas, R. Doubrava, Application of indentation as a retardation mechanism for fatigue crack growth, Int. J. Fatigue. 37 (2012) 92–99. https://doi.org/10.1016/j.ijfatigue.2011.09.012. Search in Google Scholar

X.D. Hou, N.M. Jennett, A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation, J. Phys. D. Appl. Phys. 50 (2017). https://doi.org/10.1088/1361-6463/aa8a22. Search in Google Scholar

S. Syngellakis, H. Habbab, B.G. Mellor, Finite element simulation of spherical indentation experiments, Comput. Exp. Stud. (2018) 129. Search in Google Scholar

M. Aldarwish, A. Grbović, G. Kastratović, A. Sedmak, M. Lazić, Stress intensity factors evaluation at tips of multi-site cracks in unstiffened 2024-t3 aluminium panel using XFEM, Teh. Vjesn. 25 (2018) 1616–1622. https://doi.org/10.17559/TV-20170309133824. Search in Google Scholar

Y.A. Fageehi, A.M. Alshoaibi, Nonplanar Crack Growth Simulation of Multiple Cracks Using Finite Element Method, Adv. Mater. Sci. Eng. 2020 (2020). https://doi.org/10.1155/2020/8379695. Search in Google Scholar

B. Seyfi, N. Fatouraee, M. Imeni, Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method, J. Mech. Behav. Biomed. Mater. 77 (2018) 337–346. https://doi.org/10.1016/j.jmbbm.2017.09.023. Search in Google Scholar

S. Carlsson, P.-L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing.: Part II: experimental investigation, Acta Mater. 49 (2001) 2193–2203. Search in Google Scholar

N. Huber, J. Heerens, On the effect of a general residual stress state on indentation and hardness testing, Acta Mater. 56 (2008) 6205–6213. Search in Google Scholar

N. Razavi, M.R. Ayatollahi, F. Berto, Assessment of fatigue crack growth behavior of cracked specimens repaired by indentation, Procedia Struct. Integr. 13 (2018) 69–73. Search in Google Scholar

L. Deng, J. Zhao, Z. Wang, Estimation of residual stress of metal material with yield plateau by continuous spherical indentation method, Mater. Res. Express. 7 (2020). https://doi.org/10.1088/2053-1591/ab7069. Search in Google Scholar

P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc. 64 (1981) 539–543. Search in Google Scholar

N.H. Faisal, R. Ahmed, R.L. Reuben, Indentation testing and its acoustic emission response: applications and emerging trends, Int. Mater. Rev. 56 (2011) 98-142. Search in Google Scholar

T.N. Chakherlou, J. Vogwell, The effect of cold expansion on improving the fatigue life of fastener holes, Eng. Fail. Anal. 10 (2003) 13–24. Search in Google Scholar

A. Djebli, A. Baltach, M. Lallam, M. Bendouba, Numerical Analysis of Plate Thickness Effect on Residual Stress Distribution around a Cold Expanded Hole, Trans. FAMENA. 47 (2023) 47–59. Search in Google Scholar

A. Baltach, A. Djebli, M. Bendouba, A. Aid, others, Numerical analysis and optimization of the residual stresses distribution induced by cold expansion technique, Frat. Ed Integrità Strutt. 12 (2018) 252–265. Search in Google Scholar

H. Hosseini-Toudeshky, B. Mohammadi, H.R. Daghyani, Mixed-mode fracture analysis of aluminium repaired panels using composite patches, Compos. Sci. Technol. 66 (2006) 188–198. Search in Google Scholar

M. Bendouba, A. Djebli, A. Aid, N. Benseddiq, M. Benguediab, Time-dependent J-integral solution for semi-elliptical surface crack in HDPE, C. Mater. Con. 45 (2015) 163–186. Search in Google Scholar

Harter JA. AFGROW users guide and technical manual, AFRL-VA-WP-TR-2008, Air Force Research Laboratory, Ohio, USA; 2008 Search in Google Scholar

B. Farahmand, G. Bockrath, J. Glassco, Fatigue and fracture mechanics of high risk parts: application of LEFM \& FMDM theory, Springer Science \& Business Media, 2012. Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien