Uneingeschränkter Zugang

Effect of the Number of Shells on Selected Mechanical Properties of Parts Manufactured by FDM/FFF Technology


Zitieren

Benamira, M.; Benhassine, N.; Ayad, A.; Dekhane, A. Investigation of Printing Parameters Effects on Mechanical and Failure Properties of 3D Printed PLA. Engineering Failure Analysis 2023, 148, doi:10.1016/j.engfailanal.2023.107218.Search in Google Scholar

Kadhum, A.H.; Al-Zubaidi, S.; Abdulkareem, S.S. Effect of the Infill Patterns on the Mechanical and Surface Characteristics of 3D Printing of PLA, PLA+ and PETG Materials. ChemEngineering 2023, 7, 46, doi:10.3390/CHEMENGINEERING7030046.Search in Google Scholar

Oleksy, M.; Budzik, G.; Bolanowski, M.; Paszkiewicz, A. Industry 4.0 Part II. Conditions in the Area of Production Technology and Architecture of IT System in Processing of Polymer Materials. Polimery/Polymers 2019, 64, 348–352, doi:10.14314/POLIMERY.2019.5.5.Search in Google Scholar

Amza, C.G.; Zapciu, A.; Constantin, G.; Baciu, F.; Vasile, M.I. Enhancing Mechanical Properties of Polymer 3D Printed Parts. Polymers (Basel) 2021, 13, 562, doi:10.3390/polym13040562.Search in Google Scholar

Bochnia, J.; Kozior, T.; Szot, W.; Rudnik, M.; Zmarzły, P.; Gogolewski, D.; Szczygieł, P.; Musiałek, M. Selected Mechanical and Rheological Properties of Medical Resin MED610 in PolyJet Matrix Three-Dimensional Printing Technology in Quality Aspects. 3D Printing and Additive Manufacturing 2022, doi:10.1089/3dp.2022.0215.Search in Google Scholar

Mazurkiewicz, M.; Kluczyński, J.; Jasik, K.; Sarzyński, B.; Szachogłuchowicz, I.; Łuszczek, J.; Torzewski, J.; Śnieżek, L.; Grzelak, K.; Małek, M. Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Process. Materials 2022, 15, doi:10.3390/MA15145079.Search in Google Scholar

Wu, S.; Shan, Z.; Chen, K.; Wang, S.; Zou, A.; Sun, Q. Bending Properties and Failure Behavior of 3D Printed Fiber Reinforced Resin T-Beam. Polymer Composites 2022, 43, 4556–4568, doi:10.1002/PC.26712.Search in Google Scholar

García Reyes, M.; Bataller Torras, A.; Cabrera Carrillo, J.A.; Velasco García, J.M.; Castillo Aguilar, J.J. A Study of Tensile and Bending Properties of 3D-Printed Biocompatible Materials Used in Dental Appliances. Journal of Material Science 2022, 57, 2953–2968, doi:10.1007/S10853-021-06811-3/TABLES/11.Search in Google Scholar

Zhang, X.; Yu, X.; Chen, J.; Zhao, C.; Guan, S.; Fu, Y. Influence Mechanism of the Trabecular and Chamfer Radii on the Three-Point Bending Properties of Trabecular Beetle Elytron Plates. Journal of Bionic Engineering 2021, 18, 409–418, doi:10.1007/S42235-021-0025-Z/METRICS.Search in Google Scholar

Ermakova, V.A.; Gasperovich, E. V.; Ermakov, A.I.; Litvyak, V. V. Study of Strength Characteristics of Products Produced by 3D-Printing from PLA. Science & Technique 2022, 21, 107–113, doi:10.21122/2227-1031-2022-21-2-107-113.Search in Google Scholar

Bulanda, K.; Oleksy, M.; Oliwa, R.; Budzik, G.; Przeszlowski, L.; Mazurkow, A. Biodegradable Polymer Composites Used in Rapid Prototyping Technology by Melt Extrusion Polymers (MEP). Polimery 2020, 65, 430–436, doi:10.14314/POLIMERY.2020.6.2.Search in Google Scholar

Brancewicz-Steinmetz, E.; Vergara, R.D.V.; Buzalski, V.H.; Sawicki, J. Study of the Adhesion between TPU and PLA in Multi-Material 3D Printing. Journal of Achievements in Materials and Manufacturing Engineering 2022, 115, 49–56, doi:10.5604/01.3001.0016.2672.Search in Google Scholar

Bochnia, J.; Kozior, T.; Blasiak, M. The Mechanical Properties of Thin-Walled Specimens Printed from a Bronze-Filled PLA-Based Composite Filament Using Fused Deposition Modelling. Materials 2023, 16, doi:10.3390/ma16083241.Search in Google Scholar

Kozior, T.; Mamun, A.; Trabelsi, M.; Sabantina, L. Comparative Analysis of Polymer Composites Produced by FFF and PJM 3D Printing and Electrospinning Technologies for Possible Filter Applications. Coatings 2022, 12, doi:10.3390/COATINGS12010048.Search in Google Scholar

Faidallah, R.F.; Hanon, M.M.; Szakál, Z.; Oldal, I. Study of the Mechanical Characteristics of Sandwich Structures FDM 3D-Printed. Acta Polytechnica Hungarica 2023, 20, 7–26, doi:10.12700/APH.20.6.2023.6.1.Search in Google Scholar

Hanon, M.M.; Ghaly, A.; Zsidai, L.; Klébert, S. Tribological Characteristics of Digital Light Processing (DLP) 3D Printed Graphene/Resin Composite: Influence of Graphene Presence and Process Settings. Materials & Design 2022, 218, doi:10.1016/J.MATDES.2022.110718.Search in Google Scholar

Grzelak, K.; Kluczyński, J.; Szachogłuchowicz, I.; Łuszczek, J.; Śnieżek, L.; Torzewski, J. Modification of Structural Properties Using Process Parameters and Surface Treatment of Monolithic and Thin-Walled Parts Obtained by Selective Laser Melting. Materials 2020, 13, 1–12, doi:10.3390/MA13245662.Search in Google Scholar

Bayas, E.; Kumar, P.; Harne, M. IMPACT OF PROCESS PARAMETERS ON MECHANICAL PROPERTIES OF FDM 3D-PRINTED PARTS: A COMPREHENSIVE REVIEW. European Chemical Bulletin 2023, doi:10.48047/ecb/2023.12.si5.073.Search in Google Scholar

Alarifi, I.M. PETG/Carbon Fiber Composites with Different Structures Produced by 3D Printing. Polymer Testing 2023, 120, doi:10.1016/j.polymertesting.2023.107949.Search in Google Scholar

Bermudo Gamboa, C.; Martín Béjar, S.; Trujillo Vilches, F.J.; Sevilla Hurtado, L. Geometrical Analysis in Material Extrusion Process with Polylactic Acid (PLA)+carbon Fiber. Rapid Prototyping Journal 2022, 29, 21–39, doi:10.1108/RPJ-09-2022-0294.Search in Google Scholar

Bandinelli, F.; Peroni, L.; Morena, A. Elasto-Plastic Mechanical Modeling of Fused Deposition 3D Printing Materials. Polymers (Basel) 2023, 15, doi:10.3390/POLYM15010234.Search in Google Scholar

Valvez, S.; Silva, A.P.; Reis, P.N.B. Compressive Behaviour of 3D-Printed PETG Composites. Aerospace 2022, 9, doi:10.3390/AEROSPACE9030124.Search in Google Scholar

Bochnia, J.; Blasiak, S. Stress Relaxation and Creep of a Polymer-Aluminum Composite Produced through Selective Laser Sintering. Polymers (Basel) 2020, 12, 830, doi:10.3390/POLYM12040830.Search in Google Scholar

Kozior, T.; Bochnia, J.; Gogolewski, D.; Zmarzły, P.; Rudnik, M.; Szot, W.; Szczygieł, P.; Musiałek, M. Analysis of Metrological Quality and Mechanical Properties of Models Manufactured with Photo-Curing PolyJet Matrix Technology for Medical Applications. Polymers (Basel) 2022, 14, doi:10.3390/polym14030408.Search in Google Scholar

Bochnia, J.; Blasiak, S. The Creep of Material Obtained Using SLS Technology. MM Science Journal 2020, 2020, 3774–3778, doi:10.17973/mmsj.2020_03_2019122.Search in Google Scholar

Szot, W. Rheological Analysis of 3D Printed Elements of Acrylonitrile Butadiene and Styrene Material Using Multiparameter Ideal Body Models. 3D Printing and Additive Manufacturing 2023, doi:10.1089/3dp.2022.0298.Search in Google Scholar

Grubbs, J.; Sousa, B.C.; Cote, D.L. Establishing a Framework for Fused Filament Fabrication Process Optimization: A Case Study with PLA Filaments. Polymers (Basel) 2023, 15, doi:10.3390/POLYM15081945.Search in Google Scholar

Blaj, M.; Oancea, G. Fused Deposition Modelling Process: A Literature Review. IOP Conference Series: Materials Science and Engineering 2021, 1009, doi:10.1088/1757-899X/1009/1/012006.Search in Google Scholar

Mallikarjuna, B.; Bhargav, P.; Hiremath, S.; Jayachristiyan, K.G.; Jayanth, N. A Review on the Melt Extrusion-Based Fused Deposition Modeling (FDM): Background, Materials, Process Parameters and Military Applications. International Journal on Interactive Design and Manufacturing (IJIDeM) 2023, doi:10.1007/S12008-023-01354-0.Search in Google Scholar

MakerBot Makerbot Sketch - User Manual; 2022;Search in Google Scholar

MakerBot MAKERBOT PLA Available online: https://www.makerbot.com/3d-printers/materials/method-pla/.Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien