Uneingeschränkter Zugang

Austenite-Grain-Growth Kinetics and Mechanism in Type 347H Alloy Steel for Boiler Tubes


Zitieren

Power. Design features of advanced ultra-supercritical plants, Part II https://www.powermag.com/design-features-of-advanced-ultrasupercritical-plants-part-ii/ Accessed on June 23, 2023.Search in Google Scholar

G. Kaushal, H. Singh, S. Parkash, Surface engineering, by detonation-gun spray coating, of 347H boiler steel to enhance its high-temperature corrosion resistance. Mater. High Temp. 2011, 28(1): 1–11. https://doi.org/10.3184/096034011X12960473417949.Search in Google Scholar

F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Eng. 2015, 1(2), 211 – 224. https://doi.org/10.15302/JENG-2015031.Search in Google Scholar

Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li, Precipitation behaviour, of type 347H heat-resistant austenitic steel during long-term high-temperature aging. J. Mater. Res. 2015, 30(23), 3642–3652. https://link.springer.com/article/10.1557/jmr.2015.343.Search in Google Scholar

V.T. Ha, W.S. Jung, Evolution of precipitate phases during long-term isothermal aging at 1083K (810 oC) in a new precipitation-strengthened heat-resistant austenitic stainless steel. Metall. Mater. Trans. 2012, 43, 3366–3378. https://link.springer.com/article/10.1007/s11661-012-1150-4.Search in Google Scholar

A. Sharafi, C.G. Haslam, R.D. Kerns, J. Wolfenstine, J. Sakamoto, Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A. 2017, 5(40), 21491-21504 https://doi.org/10.1039/C7TA06790A.Search in Google Scholar

Y. Zhang, X. Li, Y. Liu, C. Liu, J. Dong, L. Yu, H. Li, Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling. Mater. Charact. 2020, 169, 110612. https://doi.org/10.1016/j.matchar.2020.110612.Search in Google Scholar

D. Zhao, M.T. Benson, K. Yang, Y. Huang, F.G. Di Lemma, B. Gong, F. Han, J. Lian, Grain growth kinetics of the gamma phase metallic uranium. J. Nuclear Mater. 2023, 574, 154185 https://doi.org/10.1016/j.jnucmat.2022.154185.Search in Google Scholar

M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, B.S. Murty, Grain growth kinetics in CoCrFeNi and CoCrFeMnNi high entropy alloys processed by spark plasma sintering. J. Alloys Compd. 2019, 791, 1114–1121 https://doi.org/10.1016/j.jallcom.2019.03.341.Search in Google Scholar

Z. Savaedi, H. Mirzadeh, R.M. Aghdam, R. Mahmudi, Thermal stability, grain-growth kinetics, mechanical properties, and bio-corrosion resistance of pure Mg, ZK 30, and ZEK300 alloys: A comparative study. Mater. Today. 2022, 33, 104825 https://doi.org/10.1016/j.mtcomm.2022.104825.Search in Google Scholar

J.K. Stanley, A.J. Perrotta, Grain growth in austenitic stainless steels. Metallogr. 1969, 2(4), 349-362. https://www.sciencedirect.com/science/article/abs/pii/0026080069900652?via%3Dihub.Search in Google Scholar

H.W. Luo, H. Dong, L.F. Chen, Grain growth in Nb-alloyed stainless steels of AISI 347 during heating. Mater. Sci. Forum. 2013, 753, 345-348 https://doi.org/10.4028/www.scientific.net/MSF.753.345.Search in Google Scholar

A. Lima, A. Nascimento, H. Abreu, P. de. Lima-Neto, Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321, and 347. J. Mater. Sci. 2005, 40(1), 139–144 https://link.springer.com/article/10.1007/s10853-005-5699-9.Search in Google Scholar

Savoy Piping Inc. ASTM A312 TP347H stainless steel seamless pipe https://www.savoypipinginc.com/astm-a312-tp347h-stainless-steel-seamless-pipes-suppliers-manufacturer.html (accessed on July 7, 2023).Search in Google Scholar

H-s. Lee, J-s. Jung, D-s. Kim, K-b, Failure analysis of welded joints of 347H austenitic boiler tubes. Eng. Fail. Anal. 2015, 57, 413–422. https://doi.org/10.1016/j.engfailanal.2015.08.024.Search in Google Scholar

R. Pei, S. Korte-Kerzel, T. Al-Samamn, Normal and abnormal grain growth in magnesium: Experimental observations and simulations. J. Mater. Scie. Tech. 2020, 50, 257–270 https://doi.org/10.1016/j.jmst.2020.01.014.Search in Google Scholar

J. Moravec, I. Novakova, J. Sobotka, H. Neumann, Determination of grain growth kinetics and assessment of welding effect on properties of S700MC steel in te HAZ of welded joints. Metals, 2019, 9, 707–727. https://doi.org/10.3390/met9060707.Search in Google Scholar

Z. Huda, Metallurgy for Physicists and Engineers. CRC Press, Boca Raton, FL, 2020. https://doi.org/10.1201/9780429265587.Search in Google Scholar

Z. Huda, T. Zaharinie, Kinetics of grain growth in 2024-T3: an aerospace aluminum alloy. J. Alloys Compd. 2009, 478(1–2), 128–132. https://doi.org/10.1016/j.jallcom.2008.11.071.Search in Google Scholar

Z. Huda, Influence of particle mechanisms on kinetics of grain growth in a P/M superalloy. Mater. Sci. Forum. 2004, 467–470, 985–990. https://www.scientific.net/MSF.467-470.985.Search in Google Scholar

Z. Huda and B. Ralph, Kinetics of grain growth in powder formed IN-792: A nickel-base Superalloy. Mater. Charact. 1990, 25(2), 211-220. https://doi.org/10.1016/1044-5803(90)90011-8.Search in Google Scholar

R. Chen, Q. Chen, X. Huang, Q. He, J. Su, B. Tan, C. Xu, H. Deng, Q. Dai, Effect of Al content on the microstructural and grain growth kinetics of magnesium alloys. Metals. 2022, 12, 1955. https://www.mdpi.com/2075-4701/12/11/1955.Search in Google Scholar

B. Ralph, K.B. Shim, Z. Huda, J. Furley, M.I. Edirisinghe, The effects of particles and solutes on grain boundary migration and grain growth. Mater. Sci. Forum 1992, 94–96, 129–140. https://www.scientific.net/MSF.94-96.129.Search in Google Scholar

X. Yu, Y. Bai, B. Ye, L. Wang, B. Zhao, X. Kong, A Mg-6Y-3Zn-1Al Mg HPDC alloy having high thermal stability: Study of grain growth kinetics. J. Alloys Compnds.2022, 925, 166503. https://doi.org/10.1016/j.jallcom.2022.166503.Search in Google Scholar

B. Yuksel, T.O. Ozkan, Grain growth kinetics of B2O3-doped ZnO ceramics. Materials Science-Poland, 2015, 33(2), 220–229. https://doi.org/10.1515/msp-2015-0029.Search in Google Scholar

ASTM. ASTM E112-13(2021). Standard test methods for determining average grain size. Internet Source: https://www.astm.org/e0112-13r21.html (accessed July 7, 2023).Search in Google Scholar

R.N. Clark, J. Searle, T.L. Martin, W.S. Walters, G. Williams, The role of niobium carbides in the localised corrosion initiation of 20Cr-25Ni-Nb advanced gas-cooled reactor fuel cladding. Corrosion Science, 2020, 162, 108365. https://doi.org/10.1016/j.corsci.2019.108365.Search in Google Scholar

W.D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons, 2007.Search in Google Scholar

Aperam, 2023, AISI 347/347H Niobium Stabilized Stainless Steels. Internet Source: https://brasil.aperam.com/wp-content/uploads/2015/11/AISI-347347H-Niobium-Stabilized-Austenitic-Stainless.pdf (accessed on July 7, 2023).Search in Google Scholar

M. Mohseni, A.R. Eivani, H. Vafaeenezhad, H.R. Jafarian, M.T. Salehi, J. Zhou. An experimental and theoretical investigation of the effect of second-phase particles on grain growth during the annealing of hot-rolled AZ-61 magnesium alloy. J. Mater Res Tech. 2021, 15, 3585–3597, https://doi.org/10.1016/j.jmrt.2021.09.049.Search in Google Scholar

T. Gladman, Grain Size Control, CRC Press, Boca Raton (FL), 2004. https://doi.org/10.1201/9781003059417.Search in Google Scholar

Y.S. Lee, D.W. Kim, D.Y. Lee, W.S. Ryu, Effect of grain size on creep properties of type 316LN stainless steel. Metals & Mater. Int. 2001, 7(7), 107–114. https://link.springer.com/article/10.1007/BF03026948#:~:text=The%20effect%20of%20grain%20size,by%20the%20Hall%2DPetch%20relationship.Search in Google Scholar

Y. Li, J. Dlouhy, J. Vavřík, J. Džugan, P. Konopík, T. Krajňák, J. Veselý, Investigation of short-term creep properties of a coarse-grained Inconel 718 fabricated by directed energy deposition compared to traditional Inconel 718. Mater. Sci. Eng. A, 2022, 844, 143143. https://doi.org/10.1016/j.msea.2022.143143.Search in Google Scholar

Z. Huda, Grain growth in a powder-formed nickel-base superalloy, PhD Thesis, Department of Materials Technology, Brunel University, London, UK, 1991.Search in Google Scholar

Prosaic: Steel & Alloys. 347H Stainless Steel Pipes. https://www.prosaicsteel.com/347h_stainless_steel_pipes_tubes.html (accessed on 01/17/2023).Search in Google Scholar

G. Trego, J.C. Brachet, V. Vandenberghe, L. Portier, L. Gélébart, R. Chosson, J. Soulacroix, S. Forest, A.F. Gourgues-Lorenzon, Influence of grain size on the high temperature creep behaviour of M5 Framotom1 zirconium alloy under vacuum. J. Nucl. Mater. 2022, 560, 153503. https://doi.org/10.1016/j.jnucmat.2021.153503.Search in Google Scholar

F.J. Gil, P. Tarin, J.A. Planell, Grain growth kinetics in beta phase of Ti-6Al-4V alloy. in: Titanium ’92 Science and Technology (Eds: F.H. Froes, I. Caplan), Pittsburgh. The Miner. Metals. Mater. Soc. 1993. p 777–784.Search in Google Scholar

https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1992-VOL1/1992_Vol.1-3-C-Grain_Growth_.pdf.Search in Google Scholar

Z. Huda, T. Zaharinie, I.H.S.C. Metselaar, S. Ibrahim, G.J. Min, Kinetics of grain growth in 718 Ni-base superalloy. Arch. Metall. Mater. 2014, 59(3), 847–852. https://journals.pan.pl/dlibra/publication/102721/edition/88738/content.Search in Google Scholar

C.T. Simpson, K.T. Aust, W.C. Winegard, The four stages of grain growth. Metall. Mater. Trans. B, 1971, 2(4), 987–991. https://link.springer.com/article/10.1007/BF02664229.Search in Google Scholar

K. Vattappara, Understanding the effect of temperature and time on the gamma prime coarsening for nickel-base superalloy Haynes 282. Degree Project in Mater. Scie. & Eng. School of Industrial Engineering & Management, KTH Royal Institute of Technology, Stockholm, Sweden, 2019. http://www.diva-portal.org/smash/get/diva2:1353480/FULLTEXT02.pdf.Search in Google Scholar

K.R. Phaneesh, A. Bhat, G. Mukherjee, K.T. Kashyap, On grain growth kinetics in two-phase polycrystalline materials through Monte Carlo simulation. Bull. Mater. Sci. 36, 709–713 (2013). https://doi.org/10.1007/s12034-013-0531-7.Search in Google Scholar

M.F. Mat, Y.H.P. Manurung, Y.O. Busari, N. Muhammad, M. Graf. Experimental analysis on grain-growth kinetics of SS-316L austenitic stainless steel. J. Mech. Eng. 2021, 18(3), 97-111. https://jmeche.uitm.edu.my/wp-content/uploads/2021/09/6-RI-18-3-P20-51.pdf.Search in Google Scholar

B.P. Kashyap, K. Tangri. Grain growth behavior of type 316L stainless steel. Mater. Sci. Eng. A, 1992, 149(2), L13–L16. https://doi.org/10.1016/0921-5093(92)90392-ESearch in Google Scholar

R. Chen, Q. Chen, P. Peng, B. Tan, X. Huang, Q. He, Abnormal grain growth induced by <1120> orientation of AZ31 magnesium alloy. Mater. Sci. Tech. 2022 https://doi.org/10.1080/02670836.2023.2167297.Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien