Uneingeschränkter Zugang

Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model


Zitieren

Tsai, S.W., Wu, E.M., A general theory of strength for anisotropic materials. Journal of Composite Materials, 5(1) (1971) 58-80. https://doi.org/10.1177/00219983710050010610.1177/002199837100500106 Search in Google Scholar

Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033) (1948) 281-297. https://doi.org/10.1098/rspa.1948.004510.1098/rspa.1948.0045 Search in Google Scholar

Hoffman, O., The brittle strength of orthotropic materials. Journal of Composite Materials, 1(2) (1967) 200-206. https://doi.org/10.1177/00219983670010021010.1177/002199836700100210 Search in Google Scholar

Jones, R.M., Mechanics of composite materials, 2018 CRC Press.10.1201/9781498711067 Search in Google Scholar

Yeh, H.-L., Quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 22(6) (2003) 517-532. https://doi.org/10.1106/07316840302327410.1106/073168403023274 Search in Google Scholar

Yeh, H.-L., Yeh, H.-Y., The modified quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 21(3) (2002) 279-289. https://doi.org/10.1177/073168440202100311010.1177/0731684402021003110 Search in Google Scholar

Hashin, Z., Fatigue failure criteria for unidirectional fiber composites. University of Pennsylvania, Philadelphia. 1981.10.1115/1.3157744 Search in Google Scholar

Norris, C., Strength of orthotropic materials subjected to combined stresses, United States Department Of Agriculture Forest Service. 1962. Search in Google Scholar

Hart-Smith, L., Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates. Composites Science and Technology, 58(7) (1998) 1151-1178. https://doi.org/10.1016/S0266-3538(97)00192-910.1016/S0266-3538(97)00192-9 Search in Google Scholar

Sun, C.-T., Comparative evaluation of failure analysis methods for composite laminates, 1996. Search in Google Scholar

Davila, C.G., Camanho, P.P., Rose, C.A., Failure criteria for frp laminates. Journal of Composite Materials, 39(4) (2005) 323-345. https://doi.org/10.1177/002199830504645210.1177/0021998305046452 Search in Google Scholar

Puck, A., Kopp, J., Knops, M., Guidelines for the determination of the parameters in puck’s action plane strength criterion. Composites Science and Technology, 62(3) (2002) 371-378. https://doi.org/10.1016/S0266-3538(01)00202-010.1016/S0266-3538(01)00202-0 Search in Google Scholar

Catalanotti, G., Camanho, P., Marques, A., Three-dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 95 (2013) 63-79. https://doi.org/10.1016/j.compstruct.2012.07.01610.1016/j.compstruct.2012.07.016 Search in Google Scholar

Gutkin, R., Pinho, S., Review on failure of laminated composites: experimental perspective and modelling. 2016. Search in Google Scholar

Hill, R., The mathematical theory of plasticity. Vol. 11. 1998: Oxford University Press. Search in Google Scholar

Berthelot, J.-M., Composite materials: mechanical behavior and structural analysis. Mechanical Engineering Series. 1999: Springer.10.1007/978-1-4612-0527-2 Search in Google Scholar

Azzi, V., Tsai, S.W., Anisotropic strength of composites. Experimental Mechanics, 5(9) (1965) 283-288.10.1007/BF02326292 Search in Google Scholar

Kim, Y., Davalos, J.F., Barbero, E.J., Progressive failure analysis of laminated composite beams. Journal of Composite Materials, 30(5) (1996) 536-560. https://doi.org/10.1177/00219983960300050110.1177/002199839603000501 Search in Google Scholar

Lezgy Nazargah, M., Meshkani, Z., An efficient partial mixed finite element model for static and free vibration analyses of fgm plates rested on two-parameter elastic foundations. Structural Engineering And Mechanics, An International Journal, 66(5) (2018.) 665-676. Search in Google Scholar

Lezgy Nazargah, M., A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mechanica, 227(12) (2016) 3429-3450. https://doi.org/10.1007/s00707-016-1676-410.1007/s00707-016-1676-4 Search in Google Scholar

Lezgy Nazargah, M., Salahshuran, S., A new mixed-field theory for bending and vibration analysis of multi-layered composite plate. Archives Of Civil And Mechanical Engineering, 18(3) (2018) 818-832. https://doi.org/10.1016/j.acme.2017.12.00610.1016/j.acme.2017.12.006 Search in Google Scholar

Irhirane, E.H., Echaabi, J., Aboussaleh, M., Hattabi, M., Trochu, F., Matrix and fibre stiffness degradation of a quasi-isotrope graphite epoxy laminate under flexural bending test. Journal of Reinforced Plastics and Composites, 28(2) (2009) 201-223. https://doi.org/10.1177/073168440708421310.1177/0731684407084213 Search in Google Scholar

Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M., Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories. Journal of Reinforced Plastics and Composites, 31(21) (2012) 1467-1487. https://doi.org/10.1177/073168441245633010.1177/0731684412456330 Search in Google Scholar

Hasan, Z., Muliana, A., Failure and deformation analyses of smart laminated composites. Mechanics of Composite Materials, 48(4) (2012) 391-404. https://doi.org/10.1007/s11029-012-9285-310.1007/s11029-012-9285-3 Search in Google Scholar

Daniel, I.M., Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica, 50(2) (2015) 429-442. https://doi.org/10.1007/s11012-013-9829-110.1007/s11012-013-9829-1 Search in Google Scholar

Lezgy-Nazargah, M., Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mechanica, 228(5) (2017) 1923-1940. https://doi.org/10.1007/s00707-017-1807-610.1007/s00707-017-1807-6 Search in Google Scholar

Ounis, H., Tati, A., Benchabane, A., Thermal buckling behavior of laminated composite plates: a finite-element study. Frontiers of Mechanical Engineering, 9(1) (2014) 41-49. https://doi.org/10.1007/s11465-014-0284-z10.1007/s11465-014-0284-z Search in Google Scholar

Khechai, A., Tati, A., Guettala, A., Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes. Frontiers of Mechanical Engineering, 9(3) (2014) 281-294. https://doi.org/10.1007/s11465-014-0307-910.1007/s11465-014-0307-9 Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien