Uneingeschränkter Zugang

Time-Periodic Thermal Boundary Effects on Porous Media Saturated with Nanofluids: CGLE Model for Oscillatory Mode


Zitieren

1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. in: D.A. Singer, H.P. Wang(Eds.) Development and applications of Non-Newtonian Flows, ASME Fluids Engineering Division. 66 (1995) 99-105. Search in Google Scholar

2. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles, Netsu Bussei. 7 (1993) 227–233.10.2963/jjtp.7.227 Search in Google Scholar

3. H.S. Chen, Y. Ding, A. Lapkin, Rheological behaviour of nanofluids containing tube/rod-like nanoparticles, Power Technology. 194 (2009) 132–141.10.1016/j.powtec.2009.03.038 Search in Google Scholar

4. J.A. Eastman, SUS. Choi, W. Yu, L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters 78 (2001) 718-720.10.1063/1.1341218 Search in Google Scholar

5. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. ASME Journal of Heat Transfer. 125 (2003) 567–574.10.1115/1.1571080 Search in Google Scholar

6. J. Buongiorno, W. Hu, Nanofluid coolant for advanced nuclear power plants, In: Proceedings of ICAPP’05, Seoul. 5705 (2009) 15–19. Search in Google Scholar

7. I.S. Oyelakin, P. Lalramneihmawii, S. Mondal, S.K. Nandy, P. Sibanda, Thermophysicalanalysis of three-dimensional magnetohydrodynamic flow of a tangent hyperbolic nanofluid, Engineering Reports. 2 (2020) 12144.10.1002/eng2.12144 Search in Google Scholar

8. J.A. Eastman, SUS. Choi, W. Yu, Thompson LJ. Thermal Transport in Nanofluids, Annual Rev. Mater. Research. 34 (2004) 219-246.10.1146/annurev.matsci.34.052803.090621 Search in Google Scholar

9. U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer. 52 (2009) 2042–2048.10.1016/j.ijheatmasstransfer.2008.10.025 Search in Google Scholar

10. J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat Transfer. 128 (2006) 240–250.10.1115/1.2150834 Search in Google Scholar

11. DY. Tzou, Thermal instability of nanofluids in natural convection, International Journal of Heat and Mass Transfer. 51 (2008) 2967–2979.10.1016/j.ijheatmasstransfer.2007.09.014 Search in Google Scholar

12. D.Y. Tzou, Instability of nanofluids in natural convection, ASME Journal of Heat Transfer. 130 (2008) 072401.10.1115/1.2908427 Search in Google Scholar

13. D.A. Nield, A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by nonofluid, International Journal of Heat and Mass Transfer. 52 (2009) 5796–5801.10.1016/j.ijheatmasstransfer.2009.07.023 Search in Google Scholar

14. A.V. Kuznetsov, D.A. Nield, Effect of local Thermal non-equilibrium on the Onset of convection in porous medium layer saturated by a Nanofluid, Transport in Porous Media. 83 (2010) 425–436.10.1007/s11242-009-9452-8 Search in Google Scholar

15. A.V. Kuznetsov, D.A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model, Transport in Porous Media. 81 (2010) 409–422.10.1007/s11242-009-9413-2 Search in Google Scholar

16. B.S. Bhadauria, S.Agarwal, Natural Convection in a Nanofluid Saturated Rotating Porous Layer A Nonlinear Study, Transport in Porous Media. 87 (2011) 585-602.10.1007/s11242-010-9702-9 Search in Google Scholar

17. S. Agarwal, B.S. Bhadauria, P.G. Siddheshwar, Thermal instability of a nanofluid saturating a rotating anisotropic porous medium, Special Topics Reviews in Porous Media: An Int J. 2 (2011) 53-64.10.1615/SpecialTopicsRevPorousMedia.v2.i1.60 Search in Google Scholar

18. S. Agarwal, Natural convection in a nanofluid-saturated rotating porous layer: A more realistic approach, Transport in Porous Media. 104 (2011) 581-592.10.1007/s11242-014-0351-2 Search in Google Scholar

19. S. Rana, S. Agarwal, Convection in a binary nanofluid saturated rotating porous layer, Journal of Nanofluids. 4 (2015) 59-65.10.1166/jon.2015.1123 Search in Google Scholar

20. S. Agarwal, S. Rana, Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al 2 O 3-EG colloidal suspension. The European Physical Journal. 131 (2016) 01–14.10.1140/epjp/i2016-16101-0 Search in Google Scholar

21. J.C. Umavathi, M.A. Sheremet, Chemical reaction influence on nanofluid flow in a porous layer: Stability analysis, International Communications in Heat and Mass Transfer 138, (2022) 106353.10.1016/j.icheatmasstransfer.2022.106353 Search in Google Scholar

22. P. Kiran, Gravitational modulation effect on double-diffusive oscillatory convection in a viscoelastic fluid layer, Jourmal of Nanofluids. 11 (2022) 263-275.10.1166/jon.2022.1827 Search in Google Scholar

23. S.H. Manjula, P. Kiran, Thermo-rheological effect on weak nonlinear Rayleigh-Benard convection under rotation speed modulation, Book: Boundary Layer Flows. (2022) 01-20.10.5772/intechopen.105097 Search in Google Scholar

24. W. Ibrahim, M. Negera, Melting and viscous dissipation effect on upper-convected Maxwell and Williamson nanofluid, Engineering Reports. 2 (2020) 12159.10.1002/eng2.12159 Search in Google Scholar

25. A.O. Ajibade, P.O. Ojeagbase, Steady natural convection heat and mass transfer flowthrough a vertical porous channel with variable viscosity and thermal conductivity, Engineering Reports. 2 (2020) 12268.10.1002/eng2.12268 Search in Google Scholar

26. X. Lü et al. Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dynamics, 106 (2021) 1491–1507.10.1007/s11071-021-06524-x814840634054221 Search in Google Scholar

27. M.Z. Yin, Q.W. Zhu, X. L¨, Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model, Nonlinear Dynamics. 106 (2021) 1347–1358.10.1007/s11071-021-06587-w821197734177117 Search in Google Scholar

28. Y.H. Yin et al. B¨cklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dynamics. 108 (2022) 4181–4194.10.1007/s11071-021-06531-y Search in Google Scholar

29. Y.W. Zhao, J.W. Xia & X. L¨, The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dynamics. 108 (2022) 4195–4205.10.1007/s11071-021-07100-z Search in Google Scholar

30. B. Liu, et al. Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Modern Physics Letters B. 36(15) (2022) 2250057.10.1142/S0217984922500579 Search in Google Scholar

31. G. Venezian, Effect of modulation on the onset of thermal convection, Journal of Fluid Mechanics. 35 (1969) 243-254.10.1017/S0022112069001091 Search in Google Scholar

32. P.M. Gresho, R.L. Sani, The Effects of Gravity Modulation on the Stability of a Heated Fluid Layer, Journal of Fluid Mechanics 40 (1970) 783–806.10.1017/S0022112070000447 Search in Google Scholar

33. M.S. Malashetty, D. Basavaraj, Effect of thermal/gravity modulation on the onset of convection of Raleygh–Bénard convection in a couple stress fluid, International Journal of Transport Phenomenon. 7 (2005) 31–44.10.1016/j.ijthermalsci.2004.09.004 Search in Google Scholar

34. Y. Shu, B.Q. Li, B.R. Ramaprian, Convection in modulated thermal gradients and gravity: experimental messurements and numerical simulations, International Journal of Mass and Heat Transfer. 48 (2005) 145–160.10.1016/j.ijheatmasstransfer.2004.08.010 Search in Google Scholar

35. J.L. Rogers, W. Pesch, O. Brausch, M.F. Schatz, Complex ordered patterns in shaken convection, Physical Review E. 71 (2005) 066214.10.1103/PhysRevE.71.066214 Search in Google Scholar

36. T. Boulal, S. Aniss, M. Belhaq, Effect quasiperiodic gravitational modulation on the stability of a heated fluid layer, Physycal Review E. 76 (2007) 056320.10.1103/PhysRevE.76.056320 Search in Google Scholar

37. J.C. Umavathi, Effect of Thermal Modulation on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid, Transport in Porous Media. 98 (2013) 59-79.10.1007/s11242-013-0133-2 Search in Google Scholar

38. B.S. Bhadauria, P. Kiran, Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation, Advanced Science Letters. 20 (2014) 903-910.10.1166/asl.2014.5466 Search in Google Scholar

39. B.S. Bhadauria, P. Kiran, M. Belhaq, Nonlinear thermal convection in a layer of nanofluid under g-jitter and internal heating effects, MATEC Web of Conferences. 16 (2014) 09003.10.1051/matecconf/20141609003 Search in Google Scholar

40. P. Kiran, B.S. Bhadauria, V. Kumar, Thermal Convection in a Nanofluid Saturated Porous Medium with Internal Heating and Gravity Modulation, Journal of Nanofluids. 5(3) (2016) 321-327.10.1166/jon.2016.1220 Search in Google Scholar

41. P. Kiran, Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation, Ain Shams Engineering Journal. 7(2) (2016) 639-651.10.1016/j.asej.2015.06.005 Search in Google Scholar

42. P. Kiran, Y. Narasimhulu, Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation, Journal of Nanofluids. 6 (2017) 01-11.10.1166/jon.2017.1333 Search in Google Scholar

43. P. Kiran, Y. Narasimhulu, Internal heating and thermal modulation effects on chaotic convection in a porous medium, Journal of Nanofluids. 7 (2018) 544-555.10.1166/jon.2018.1462 Search in Google Scholar

44. P. Kiran, S.H. Manjula, Internal heat modulation on Darcy convection in a porous media saturated by nanofluid, Journal of Nanofluids. (2022) In press.10.1166/jon.2023.1959 Search in Google Scholar

45. B.S. Bhadauria, P. Kiran, Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation, International Journal of Heat and Mass Transfer. 77 (2014) 843–851.10.1016/j.ijheatmasstransfer.2014.05.037 Search in Google Scholar

46. B.S. Bhadauria, P. Kiran, Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to temperature modulation at the boundaries, International Communications in Heat Mass Transfer. 58 (2014) 166–175.10.1016/j.icheatmasstransfer.2014.08.031 Search in Google Scholar

47. P. Kiran, B.S. Bhadauria, R. Roslan, The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium, Journal of Nanofluids. 9 (2020) 36-46.10.1166/jon.2020.1724 Search in Google Scholar

48. B.S. Bhadauria, S. Agarwal, A. Kumar, Nonlinear Two-Dimensional Convection in a Nanofluid Saturated Porous Medium, Transport in Porous Media. 90 (2011) 605–625.10.1007/s11242-011-9806-x Search in Google Scholar

49. B.S. Bhadauria, P. Kiran, Weak nonlinear oscillatory convection in a viscoelastic fluid layer under gravity modulation, International Journal of Non-linear Mechanics. 65 (2014) 133–140.10.1016/j.ijnonlinmec.2014.05.002 Search in Google Scholar

50. B.S. Bhadauria, P. Kiran, Weak nonlinear oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation, Transport in Porous Media. 104 (2014) 451-467.10.1007/s11242-014-0343-2 Search in Google Scholar

51. B.S. Bhadauria, P. Kiran, Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter, International Journal of Heat and Mass Transfer. 84 (2014) 610-624.10.1016/j.ijheatmasstransfer.2014.12.032 Search in Google Scholar

52. S.H Davis, The stability of time periodic flows, Annual Review of Fluid Mechanics. 8 (1976) 57–74.10.1146/annurev.fl.08.010176.000421 Search in Google Scholar

53. S. Agarwal, B.S. Bhadauria, Convective heat transport by longitudinal rolls in dilute Nanoliquids, Journal of Nanofluids. 3 (2014) 380-390.10.1166/jon.2014.1110 Search in Google Scholar

54. B. Rajib, G.C. Layek, The onset of thermo convection in a horizontal viscoelastic fluid layer heated underneath, Thermal Energy and Power Engineering. 1 (2012) 01–9.10.11648/j.ijepe.20120101.11 Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien