[
1. Y.W. Choi, D.J. Moon, Y.J. Kim, M. Lachemi, Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles, Construction and Building Materials. 23 (2009) 2829–2835.10.1016/j.conbuildmat.2009.02.036
]Search in Google Scholar
[
2. K. Hannawi, S. Kamali-Bernard, W. Prince, Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste Management. 30 (2010) 2312–2320.10.1016/j.wasman.2010.03.02820417085
]Search in Google Scholar
[
3. J.M.L. Reis, E.P. Carneiro, Evaluation of PET waste aggregates in polymer mortars, Construction and Building Materials. 27 (2012) 107–111.10.1016/j.conbuildmat.2011.08.020
]Search in Google Scholar
[
4. S. Akçaozoǧlu, C. Ulu, Recycling of waste PET granules as aggregate in alkaliactivated blast furnace slag/metakaolin blends, Construction and Building Materials. 58 (2014) 31–37.10.1016/j.conbuildmat.2014.02.011
]Search in Google Scholar
[
5. F.A. Spósito, R.T. Higuti, M.M. Tashima, J.L. Akasaki, J.L.P. Melges, C.C. Assunção, M. Bortoletto, R.G. Silva, C.F. Fioriti, Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime, Journal of Building Engineering. 32 (2020) 101506.
]Search in Google Scholar
[
6. M. Hacini, A.S. Benosman, N.K. Tani, M. Mouli, Y. Senhadji, A. Badache, N. Latroch, Utilization and assessment of recycled Polyethylene Terephthalate strapping bands as lightweight aggregates in Eco-efficient composite mortars. Construction and Building Materials. 270 (2021) 121427
]Search in Google Scholar
[
7. Y. Choi, D. Moon, J. Chung, S. Cho, Effects of waste PET bottles aggregate on the properties of concrete, Cement and Concrete Research. 35 (2005) 776–781.10.1016/j.cemconres.2004.05.014
]Search in Google Scholar
[
8. A. Sadrmomtazi, S. Dolati-Milehsara, O. Lot, A. Sadeghi-Nik, The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self- compacting concrete, Journal of Cleaner Production. 112 (2016) 2363–2373.10.1016/j.jclepro.2015.09.107
]Search in Google Scholar
[
9. E. Rahmani, M. Dehestani, M.H.A. Beygi, H. Allahyari, I.M. Nikbin, On the mechanical properties of concrete containing waste PET particles, Construction and Building Materials. 47 (2013) 1302–130810.1016/j.conbuildmat.2013.06.041
]Search in Google Scholar
[
10. F. Fraternali, S. Spadea, V.P. Berardi, Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Construction and Building Materials. 61 (2014) 293–30210.1016/j.conbuildmat.2014.03.019
]Search in Google Scholar
[
11. R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow. Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete. Journal of Building Engineering. 57 (2022) 104948A.
]Search in Google Scholar
[
12. H. Alani, M. A.M. Johari, A.T. Noaman, N.M. Bunnori, T.A. Majid, Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete, Construction and Building Materials. 331 (2022) 127306.
]Search in Google Scholar
[
13. A.A. Mohammed, A.A.F. Rahim, Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber, Construction and Building Materials. 244 (2020) 118350.
]Search in Google Scholar
[
14. L.A. Pereira de Oliveira, João P. Castro-Gomes, Physical and mechanical behaviour of recycled PET fibre reinforced mortar, Construction and Building Materials. 25 (2011) 1712-1717.10.1016/j.conbuildmat.2010.11.044
]Search in Google Scholar
[
15. M. Małek, M. Jackowski, W. Łasica, M. Kadela, Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on Portland cement, Materials. 13 (2020) 1827.
]Search in Google Scholar
[
16. F. Alrshoudi, H. Mohammadhosseini, M.M. Tahir, R. Alyousef, H. Alghamdi, Y. Alharbi, A. Alsaif, Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers, Journal of Building Engineering. 32 (2020) 101522.
]Search in Google Scholar
[
17. J. Thorneycroft, J. Orr, P. Savoikar, R. Ball, Performance of structural concrete with recycled plastic waste as a partial replacement for sand, Construction and Building Materials. 161 (2018) 63–69.10.1016/j.conbuildmat.2017.11.127
]Search in Google Scholar
[
18. I. Almeshal, B.A. Tayeh, R. Alyousef, H. Alabduljabbar, A.M. Mohamed, Ecofriendly concrete containing recycled plastic as partial replacement for sand, Journal of Materials Research and Technology. 9 (3) (2020) 4631–4643.10.1016/j.jmrt.2020.02.090
]Search in Google Scholar
[
19. AFNOR standards organisation. Méthodes d’essais des ciments - Partie 1: détermination des résistances mécaniques. NF EN 196-1 (2006).
]Search in Google Scholar
[
20. S. Guettala, B. Mezghiche, M. Mellas, Influence of addition dune sand powder to cement, on the properties physical-mechanical and deformability of concrete, Asian Journal of Civil Engineering (Building and Housing). 13 (6) (2012) 765-781.
]Search in Google Scholar
[
21. M. Liu, Y. Hu, Z. Lai, T. Yan, X. He, J. Wu, Z. Lu, S. Lv, Influence of various bentonites on the mechanical properties and impermeability of cement mortars, Construction and Building Materials. 241 (2020) 118015.
]Search in Google Scholar
[
22. H. Zanni, M. Cheyrezy, V. Maret, S. Philippot, P. Nieto, Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29 Si NMR, Cement and Concrete Research. 26 (1) (1996) 93–100.10.1016/0008-8846(95)00197-2
]Search in Google Scholar
[
23. J. Du, W. Meng, K.H. Khayat, Y. Bao, P. Guo, Z. Lyu, A. Abu-obeidah, H. Nassif, H. Wang, New development of ultra-high-performance concrete (UHPC), Composites Part B: Engineering. 224 (2021) 109220.
]Search in Google Scholar
[
24. A.H. Alani, M.A.M. Johari, A.T. Noaman, N.M. Bunnori, T.A. Majid. Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete, Construction and Building Materials. 331 (2022) 127306.
]Search in Google Scholar
[
25. AFNOR standards organisation. Bétons - Mesure du temps d’écoulement des bétons et des mortiers aux maniabilimètres NF 18-452 (1988).
]Search in Google Scholar
[
26. AFNOR standards organisation. Méthodes d’essai des mortiers pour maçonnerie - Partie 6: Détermination de la masse volumique apparente du mortier frais. NF EN 1015-6 (1999).
]Search in Google Scholar
[
27. AFNOR standards organisation. Méthodes d’essai des mortiers pour maçonnerie - Partie 10: détermination de la masse volumique apparente sèche du mortier durci. NF EN 1015-10 (2000).
]Search in Google Scholar
[
28. AFNOR standards organisation. Méthodes d’essai des mortiers pour maçonnerie - Partie 18: détermination du coefficient d’absorption d’eau par capillarité du mortier durci. NF EN 1015-18 (2003).
]Search in Google Scholar
[
29. American society for testing material. Standard Test Method for Pulse Velocity Through Concrete. ASTM C597-02 (2010)
]Search in Google Scholar
[
30. M. Malešev, V. Radonjanin, I. Lukić, V. Bulatović, The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete, Arabian Journal for Science and Engineering. 39 (2) (2014) 705–711.10.1007/s13369-013-0702-2
]Search in Google Scholar
[
31. T. Gupta, S. Chaudhary, R.K. Sharma, Mechanical and durability properties of waste rubber fiber concrete with and without silica fume, Journal of Cleaner Production. 112 (1) (2016) 702-711.10.1016/j.jclepro.2015.07.081
]Search in Google Scholar
[
32. M.B. Leite, J.G.L. Figueire do Filho, P.R.L. Lima, Workability study of concretes made with recycled mortar aggregate, Materials and Structures. 46 (2013) 1765–1778.10.1617/s11527-012-0010-4
]Search in Google Scholar
[
33. İ.B. Topçu, S. Şengel, Properties of concretes produced with waste concrete aggregate, Cement and Concrete Research. 34 (2004) 1307–1312.10.1016/j.cemconres.2003.12.019
]Search in Google Scholar
[
34. T. Felixkala, P. Partheeban, Granite powder concrete, Indian Journal of Science and Technology. 3(3) (2010) 311–31710.17485/ijst/2010/v3i3.6
]Search in Google Scholar
[
35. Z. Laidani, Y. Ouldkhaoua, M. Sahraoui, B. Benabed, Feasibility of marble powder and calcined bentonite in SCM as partial substitution of cement for sustainable production Építőanyag – Journal of Silicate Based and Composite Materials. 74 (2022) 61–66.
]Search in Google Scholar
[
36. C.B. Farinha, J. de Brito, R. Veiga, Incorporation of high contents of textile, acrylic and glass waste fibres in cement-based mortars. Influence on mortars’ fresh, mechanical and deformability behavior, Construction and Building Materials. 303 (2021) 124424.
]Search in Google Scholar
[
37. T. Ochi, S. Okubo, K. Fukui, Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cement and Concrete Composites. 29 (6) (2007) 448–455.10.1016/j.cemconcomp.2007.02.002
]Search in Google Scholar
[
38. R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow, Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete, Journal of Building Engineering. 57 (2022) 104948
]Search in Google Scholar
[
39. D. Niu, L.i. Su, Y. Luo, D. Huang, D. Luo, Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete, Construction and Building Materials. 237 (2020) 117628.
]Search in Google Scholar
[
40. X.U.E. Weipei, L.I.U. Xiaoyuan, Y.A.O. Zhishu, H. Cheng, L.I. Haopeng, Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete, Journal of Composite Materials. 37 (9) (2020) 2285-2293.
]Search in Google Scholar
[
41. D. Niu, D. Huang, Q. Fu, Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers, Advances in Structural Engineering. 22 (2019) 2278–2288.10.1177/1369433219837387
]Search in Google Scholar
[
42. D. Wang, Y. Ju, H. Shen, L. Xu, Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber, Construction and Building Materials. 197 (2019) 464–473.10.1016/j.conbuildmat.2018.11.181
]Search in Google Scholar
[
43. Y. Yao, B. Wang, Y. Zhuge, Z. Huang, Properties of hybrid basalt-polypropylene fiber reinforced mortar at different temperatures, Construction and Building Materials. 346 (2022) 128433.
]Search in Google Scholar
[
44. A. Toghroli, P. Mehrabi, M. Shariati, N.T. Trung, S. Jahandari, H. Rasekh, Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers, Construction and Building Materials. 252 (2020) 118997.
]Search in Google Scholar