Uneingeschränkter Zugang

Effects of B Addition on the Microstructure and Microhardness of Melt-Spun Al-7075 Alloy


Zitieren

1. A. Azarniya, A.K. Taheri, K.K. Taheri, Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloys Compd. 781 (2019) 945–983. https://doi.org/10.1016/j.jallcom.2018.11.286. Search in Google Scholar

2. A. Azarniya, H.R.M. Hosseini, A new method for fabrication of in situ Al/Al3Ti-Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite, J. Alloys Compd. 643 (2015) 64–73. https://doi.org/10.1016/j.jallcom.2015.04.145. Search in Google Scholar

3. E.A. Starke, J.T. Staleyt, Application of modern aluminum alloys to aircraft, Pro. Aerosp. Sci. 32 (1996) 131–172. https://doi.org/10.1016/0376-0421(95)00004-6. Search in Google Scholar

4. Y. Lin, S. Mao, Z. Yan, Y. Zhang, L. Wang, Melt spinning induces sub-micrometric/micrometric grained structure and dislocations in 7075 Al alloy, J. Alloys Compd. 651 (2015) 699–704. https://doi.org/10.1016/j.jallcom.2015.08.146. Search in Google Scholar

5. M.B. Lezaack, F. Hannard, L. Zhao, A. Orekhov, J. Adrien, A. Miettinen, H. Idrissi, A. Simar, Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatments, Materialia. 20 (2021) 101248. https://doi.org/10.1016/j.mtla.2021.101248. Search in Google Scholar

6. D.Z. Avery, B.J. Phillips, C.J.T. Mason, M. Palermo, M.B. Williams, C. Cleek, O.L. Rodriguez, P.G. Allison, J.B. Jordon, Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy, Metall. Mater. Trans. A. 51 (2020) 2778–2795. https://doi.org/10.1007/s11661-020-05746-9. Search in Google Scholar

7. J. Fu, K. Wang, X. Li, H. Zhang, Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method, Int. J. Miner. Metall. Mater. 23 (2016) 1404–1415. https://doi.org/10.1007/s12613-016-1364-3. Search in Google Scholar

8. K.W. J. Fu, H. Jiang, Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAP-Based SIMA Process, Acta Metall. Sin. 31 (2018) 337–350. https://doi.org/10.1007/s40195-017-0672-6. Search in Google Scholar

9. X. Meng, D. Zhang, W. Zhang, C. Qiu, D. Chen, Materials Science & Engineering A Achieving high damping capacity and strength simultaneously in a high-zinc aluminum alloy via melt spinning and hot extrusion, Mater. Sci. Eng. A. 833 (2022) 142376. https://doi.org/10.1016/j.msea.2021.142376. Search in Google Scholar

10. P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties, J. Alloys Compd. 707 (2017) 287–290. https://doi.org/10.1016/j.jallcom.2016.11.210. Search in Google Scholar

11. E.T.A. Guner, D. Dispinar, Microstructural and Mechanical Evolution of Semisolid 7075 Al Alloy Produced by SIMA Process at Various Heat Treatment Parameters, Arab. J. Sci. Eng. 44 (2019) 1243–1253. https://doi.org/10.1007/s13369-018-3477-7. Search in Google Scholar

12. W. Wang, J. Shen, W. Liu, H. Bian, Q. Li, Effect of laser energy density on surface physical characteristics and corrosion resistance of 7075 aluminum alloy in laser cleaning, Opt. Laser Technol. 148 (2022) 107742. https://doi.org/10.1016/j.optlastec.2021.107742. Search in Google Scholar

13. X. Su, G. Xu, J. Jiang, Structural and mechanical properties of 7075 alloy strips fabricated by roll-casting in a static magnetic field, Int. J. Miner. Metall. Mater. 21 (2014) 696–701. https://doi.org/10.1007/s12613-014-0960-3. Search in Google Scholar

14. J. Leng, B. Ren, Q. Zhou, J. Zhao, Effect of Sc and Zr on recrystallization behavior of 7075 aluminum alloy, Trans. Nonferrous Met. Soc. China. 31 (2021) 2545–2557. https://doi.org/10.1016/S1003-6326(21)65674-1. Search in Google Scholar

15. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion, J. Alloys Compd. 819 (2020) 152990. https://doi.org/10.1016/j.jallcom.2019.152990. Search in Google Scholar

16. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, Influence of solution treatment on microstructures and mechanical aluminum alloy, Mater. Sci. Eng. A. 802 (2021) 140623. https://doi.org/10.1016/j.msea.2020.140623. Search in Google Scholar

17. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, Microstructure and mechanical properties of a rapidly-solidified and extruded Al-13.2 Zn-2.5 Mg− 1.2 Cu-0.2 Zr alloy and its aging hardening response at 120°C, Mater. Sci. Eng. A. 826 (2021). https://doi.org/10.1016/j.msea.2021.141969. Search in Google Scholar

18. R.D.P. Adler, Calorimetric Studies of 7000 Series Aluminum Alloys: II. Comparison of 7075, 7050, and RX720 Alloys, Metall. Trans. A. 8 (1977) 1185–1190. https://doi.org/10.1007/BF02667404. Search in Google Scholar

19. J.K. Park, A.J. Ardell, Precipitate microstructure of peak-aged 7075 Al, Scr. Metall. 22 (1988) 1115-1119. https://doi.org/10.1016/S0036-9748(88)80114-5. Search in Google Scholar

20. P.N. Adler, R. Deiasi, G. Geschwind, Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy, Metall. Trans. 3 (1972) 3191-3200. https://doi.org/10.1007/BF02661333. Search in Google Scholar

21. A.H. Feng, D.L. Chen, Z.Y. Ma, Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy, Metall. Mater. Trans. A. 41 (2010) 957–971. https://doi.org/10.1007/s11661-009-0152-3. Search in Google Scholar

22. Z.M. El-Baradie, M. El-Sayed, Effect of double thermomechanical treatments on the properties of 7075 A1 alloy. J. Mater. Process. Technol. 62 (1996) 76-80. https://doi.org/10.1016/0924-0136(95)02226-0. Search in Google Scholar

23. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52 (2004) 4589–4599. https://doi.org/10.1016/j.actamat.2004.06.017. Search in Google Scholar

24. Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Enhanced mechanical properties in ultrafine grained 7075 Al alloy. J. Mater. Res. 20 (2005) 288-291. https://doi.org/10.1557/JMR.2005.0057. Search in Google Scholar

25. L. Greer, Grain refinement in rapidly solidified alloys. Metals (Basel). 133 (1991) 16–21. https://doi.org/10.1016/0921-5093(91)90006-9. Search in Google Scholar

26. U. A. Curle, G. Govender, Semi-solid rheocasting of grain refined aluminum alloy 7075. Trans. Nonferrous Met. Soc. China. 20 (2010) 832–836. https://doi.org/10.1016/S1003-6326(10)60590-0. Search in Google Scholar

27. Ł. Rogal, J. Dutkiewicz, H.V. Atkinson, L. Lity, T. Czeppe, M. Modigell, Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater. Sci. Eng. A. 580 (2013) 362–373. https://doi.org/10.1016/j.msea.2013.04.078. Search in Google Scholar

28. D. Srinivasan, K. Chattopadhyay, Metastable phase evolution and hardness of nanocrystalline Al – Si–Zr alloys. Mater. Sci. Eng. 306 (2001) 534–539. https://doi.org/10.1016/S0921-5093(00)01510-0. Search in Google Scholar

29. S. Liu, X. Wang, Q. Zu, B. Han, X. Han, C. Cui, Significantly improved particle strengthening of Al–Sc alloy by high Sc composition design and rapid solidification. Mater. Sci. Eng. A. 800 (2021) 140304. https://doi.org/10.1016/j.msea.2020.140304. Search in Google Scholar

30. Y. Lin, S. Mao, Z. Yan, Y. Zhang, L. Wang, The enhanced microhardness in a rapidly solidified Al alloy. Mater. Sci. Eng. A. 692 (2017) 182–191. https://doi.org/10.1016/j.msea.2017.03.052. Search in Google Scholar

31. L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, E.V. Lysova, Investigation of phase equilibria in alloys of the Al–Zn–Mg–Cu–Zr–Sc system. J. Alloys Compd. 367 (2004) 10–16. https://doi.org/10.1016/j.jallcom.2003.08.003. Search in Google Scholar

32. G. Peng, K. Chen, H. Fang, S. Chen, A study of nanoscale Al3(Zr, Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Mater. Sci. Eng. A. 535 (2012) 311–315. https://doi.org/10.1016/j.msea.2011.12.094. Search in Google Scholar

33. D.S. Thompson, B.S. Subramanya, S.A. Levy, Quench Rate Effects in AI-Zn-Mg-Cu Alloys. Metall. Trans. 2 (1971) 1149–1160. https://doi.org/10.1007/BF02664247. Search in Google Scholar

34. K.E. Knipling, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al – Zr and Al – Zr – Ti alloys during aging at 450–600 °C. Acta Mater. 56 (2008) 1182–1195. https://doi.org/10.1016/10.1016/j.actamat.2007.11.011. Search in Google Scholar

35. Y. Yang, J.J. Licavoli, S.A. Hackney, P.G. Sanders, Coarsening behavior of precipitate Al3(Sc,Zr) in supersaturated Al-Sc-Zr alloy via melt spinning and extrusion. J. Mater. Sci. 56 (2021) 11114–11136. https://doi.org/10.1007/s10853-021-05981-4. Search in Google Scholar

36. Y. Yang, J.J. Licavoli, P.G. Sanders, Improved strengthening in supersaturated Al-Sc-Zr alloy via melt-spinning and extrusion. J. Alloys Compd. 826 (2020) 154185. https://doi.org/10.1016/j.jallcom.2020.154185. Search in Google Scholar

37. M. Vlach, V. Kodetova, J. Cizek, M. Leibner, F. Luk, L. Bajtošov, H. Kudrnov, V. Sima, S. Zikmund, E. Cernoskova, P. Kutalek, V. Neubert, V. Neubert, Role of Small Addition of Sc and Zr in Clustering and Precipitation Phenomena Induced in AA7075. Metals (Basel). 22 (2021) 1–20. https://doi.org/10.3390/met11010008. Search in Google Scholar

38. M.F. Kilicaslan, S.I. Elburni, B. Akgul, The effects of Nb addition on the microstructure and mechanical properties of melt spun Al-7075 alloy. Adv. Mater. Sci. 21 (2021) 16–25. https://doi.org/10.2478/adms-2021-0008. Search in Google Scholar

39. S. Murty, S.A. Kori, M. Chakraborty, B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47 (2013) 1–29. https://doi.org/10.1179/095066001225001049. Search in Google Scholar

40. M. Alipour, M. Azarbarmas, F. Heydari, M. Hoghoughi, M. Alidoost, M. Emamy, The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior. J. Mater. Des. 38 (2012) 64–73. https://doi.org/10.1016/j.matdes.2012.02.008. Search in Google Scholar

41. X. Wang, Z. Liu, W.E.I. Dai, Q. Han, On the understanding of aluminum grain refinement by Al-Ti-B type master alloys. Metall. Mater. Trans. B. 2 (2014) 1620–1625. https://doi.org/10.1007/s11663-014-0252-3. Search in Google Scholar

42. E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications. J. Mater. Sci. 45 (2010) 287–325. https://doi.org/10.1007/s10853-009-3995-5. Search in Google Scholar

43. H. Jones, A perspective on the development of rapid solidification and nonequilibrium processing and its future. Mater. Sci. Eng. 304–306 (2001) 11–19. https://doi.org/10.1016/s0921-5093(00)01552-5. Search in Google Scholar

44. M.F. Kılıçaslan, Y. Yılmaz, B. Akgül, H. Karataş, C.D. Vurdu, Effect of Fe-Ni substitution in FeNiSiB soft magnetic alloys produced by melt spinning. Adv. Mater. Sci. 21 (2021) 79–89. https://doi.org/10.2478/adms-2021-0026. Search in Google Scholar

45. K. Dehghani, M. Salehi, M. Salehi, H. Aboutalebi, Comparing the melt-spun nanostructured aluminum 6061 foils with conventional direct chill ingot. Met. Sci. Eng. 489 (2008) 245–252. https://doi.org/10.1016/j.msea.2007.12.017. Search in Google Scholar

46. Z. Chen, J. Zhao, P. Chen, Microstructure and mechanical properties of nanostructured A8006 ribbons. Mater. Sci. Eng. A. 552 (2012) 189–193. https://doi.org/10.1016/j.msea.2012.05.029. Search in Google Scholar

47. M. Salehi, K. Dehghani, Structure and properties of nanostructured aluminum A413.1 produced by melt spinning compared with ingot microstructure. J. Alloys Compd. 457 (2008) 357–361. https://doi.org/10.1016/j.jallcom.2007.03.117. Search in Google Scholar

48. G.L. Litynska-Dobrzynska, J. Dutkiewicz, W. Maziarz, Microstructure of rapidly solidified Al-12Zn-3Mg-1.5Cu alloy with Zr and Sc additions. Mater. Trans. 52 (2011) 309–314. https://doi.org/10.2320/matertrans.MB201009. Search in Google Scholar

49. K.S. Prasad, A.K. Mukhopadhyay, B. Majumdar, D. Akhtar, K.S. Prasad, A.K. Mukhopadhyay, B. Majumdar, D. Akhtar, On the nature and stability of phases present in a rapidly solidified aluminium alloy 7010 containing scandium. Mater. Manuf. Process. 6914 (2008) 658–664. https://doi.org/10.1080/10426910802316633. Search in Google Scholar

50. M.S.W. Szymanski, M. Bigaj, M. Gawlik, M. Mitka, Consolidation by continuous rotary extrusion of aluminum cast by the melt spinning process. Arch. Metall. Mater. 59 (2014) 309–312. https://doi.org/10.2478/amm-2014-0050. Search in Google Scholar

51. D. Srinivasan, K. Chattopadhyay, Formation and coarsening of a nanodispersed microstructure in melt spun Al–Ni–Zr alloy. Mater. Sci. Eng. A. 255 (1998) 107–116. https://doi.org/10.1016/S0921-5093(98)00769-2. Search in Google Scholar

52. N. Berndt, P. Frint, Influence of extrusion temperature on the aging behavior and mechanical 24 properties of an AA6060. Metals (Basel). 8 (1) (2018) 1–9. https://doi.org/10.3390/met8010051. Search in Google Scholar

53. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, J. Mater. Des. 56 (2014) 862–871. https://doi.org/10.1016/j.matdes.2013.12.002. Search in Google Scholar

54. H.D. Alamdari, D. Dubé, P. Tessier, Behavior of boron in molten aluminum and its grain refinement mechanism. Metall. Mater. Trans. A. 44 (2013) 388–394. https://doi.org/10.1007/s11661-012-1388-x. Search in Google Scholar

55. H. Shang, B. Ma, K. Shi, R. Li, G. Li, The strengthening effect of boron interstitial supersaturated solid solution on aluminum films. Mater. Lett. 192 (2017) 104–106. https://doi.org/10.1016/j.matlet.2016.12.048. Search in Google Scholar

56. P.B. Prakash, K.B. Raju, K. Venkatasubbaiah, N. Manikandan, Microstructure analysis and evaluation of mechanical propertiesof Al 7075 GNP’s composites. Mater. Today Proc. 5 (2018) 14281–14291. https://doi.org/10.1016/j.matpr.2018.03.010. Search in Google Scholar

57. S. Kohiki, M. Nishitani, T. Wada, Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J. Appl. Phys. 75 (1994) 2069–2072. https://doi.org/10.1063/1.356310. Search in Google Scholar

58. Z.Q. Xu, Z.L. Ma, M. Wang, Y.W. Chen, Y.D. Tan, X.W. Cheng, Design of novel lowdensity refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A. 755 (2019) 318–322. https://doi.org/10.1016/j.msea.2019.03.054. Search in Google Scholar

59. A.L. Ortiz, L. Shaw, X-ray diffraction analysis of a severely plastically deformed aluminum alloy. Acta Mater. 52 (2004) 2185–2197. https://doi.org/10.1016/j.actamat.2004.01.012. Search in Google Scholar

60. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, Crystallographic study of grain refinement of Al by Nb addition, J. Appl. Crystallogr. (2014). https://doi.org/10.1107/S1600576714004476. Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien